Alle kategorier
Du har valgt: Bournemouth
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Bournemouth )
 

Virtuelt klasserom 3 dager 20 000 kr
This course teaches Network Engineers how to design, implement, and maintain Azure networking solutions. [+]
COURSE OVERVIEW  This course covers the process of designing, implementing, and managing core Azure networking infrastructure, Hybrid Networking connections, load balancing traffic, network routing, private access to Azure services, network security and monitoring. Learn how to design and implement a secure, reliable, network infrastructure in Azure and how to establish hybrid connectivity, routing, private access to Azure services, and monitoring in Azure. TARGET AUDIENCE This course is aimed at Network Engineers looking to specialize in Azure networking solutions. An Azure Network engineer designs and implements core Azure networking infrastructure, hybrid networking connections, load balance traffic, network routing, private access to Azure services, network security and monitoring. The azure network engineer will manage networking solutions for optimal performance, resiliency, scale, and security. COURSE CONTENT Module 1: Azure Virtual Networks In this module you will learn how to design and implement fundamental Azure Networking resources such as virtual networks, public and private IPs, DNS, virtual network peering, routing, and Azure Virtual NAT. Azure Virtual Networks Public IP Services Public and Private DNS Cross-VNet connectivity Virtual Network Routing Azure virtual Network NAT Lab 1: Design and implement a Virtual Network in Azure Lab 2: Configure DNS settings in Azure Lab 3: Connect Virtual Networks with Peering After completing module 1, students will be able to: Implement virtual networks Configure public IP services Configure private and public DNS zones Design and implement cross-VNET connectivity Implement virtual network routing Design and implement an Azure Virtual Network NAT   Module 2: Design and Implement Hybrid Networking In this module you will learn how to design and implement hybrid networking solutions such as Site-to-Site VPN connections, Point-to-Site VPN connections, Azure Virtual WAN and Virtual WAN hubs. Site-to-site VPN connection Point-to-Site VP connections Azure Virtual WAN Lab 4: Create and configure a local gateway Create and configure a virtual network gateway Create a Virtual WAN by using Azure Portal Design and implement a site-to-site VPN connection Design and implement a point-to-site VPN connection Design and implement authentication Design and implement Azure Virtual WAN Resources   Module 3: Design and implement Azure ExpressRoute In this module you will learn how to design and implement Azure ExpressRoute, ExpressRoute Global Reach, ExpressRoute FastPath and ExpressRoute Peering options. ExpressRoute ExpressRoute Direct ExpressRoute FastPath ExpressRoute Peering Lab 5: Create and configure ExpressRoute Design and implement Expressroute Design and implement Expressroute Direct Design and implement Expressroute FastPath   Module 4: load balancing non-HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for non-HTTP(S) traffic in Azure with Azure Load balancer and Traffic Manager. Content Delivery and Load Blancing Azure Load balancer Azure Traffic Manager Azure Monitor Network Watcher Lab 6: Create and configure a public load balancer to load balance VMs using the Azure portal Lab:7 Create a Traffic Manager Profile using the Azure portal Lab 8: Create, view, and manage metric alerts in Azure Monitor Design and implement Azure Laod Balancers Design and implement Azure Traffic Manager Monitor Networks with Azure Monitor Use Network Watcher   Module 5: Load balancing HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for HTTP(S) traffic in Azure with Azure Application gateway and Azure Front Door. Azure Application Gateway Azure Front Door Lab 9: Create a Front Door for a highly available web application using the Azure portal Lab 10: Create and Configure an Application Gateway Design and implement Azure Application Gateway Implement Azure Front Door   Module 6: Design and implement network security In this module you will learn to design and imponent network security solutions such as Azure DDoS, Azure Firewalls, Network Security Groups, and Web Application Firewall. Azure DDoS Protection Azure Firewall Network Security Groups Web Application Firewall on Azure Front Door Lab 11: Create a Virtual Network with DDoS protection plan Lab 12: Deploy and Configure Azure Firewall Lab 13: Create a Web Application Firewall policy on Azure Front Door Configure and monitor an Azure DDoS protection plan implement and manage Azure Firewall Implement network security groups Implement a web application firewall (WAF) on Azure Front Door   Module 7: Design and implement private access to Azure Services In this module you will learn to design and implement private access to Azure Services with Azure Private Link, and virtual network service endpoints. Define Azure Private Link and private endpoints Design and Configure Private Endpoints Integrate a Private Link with DNS and on-premises clients Create, configure, and provide access to Service Endpoints Configure VNET integration for App Service Lab 14: restrict network access to PaaS resources with virtual network service endpoints Lab 15: create an Azure private endpoint Define the difference between Private Link Service and private endpoints Design and configure private endpoints Explain virtual network service endpoints Design and configure access to service endpoints Integrate Private Link with DNS Integrate your App Service with Azure virtual networks   TEST CERTIFICATION This course helps to prepare for exam AZ-700 [-]
Les mer
Oslo 5 dager 27 500 kr
20 Oct
20 Oct
24 Nov
MS-102: Microsoft 365 Administrator Essentials [+]
MS-102: Microsoft 365 Administrator [-]
Les mer
Oslo 3 dager 21 000 kr
20 Oct
20 Oct
ITIL® Specialist - Create, Deliver & Support [+]
ITIL® Specialist - Create, Deliver & Support [-]
Les mer
Oslo 3 dager 24 500 kr
23 Sep
23 Sep
09 Dec
Check Point Certified Security Administrator (CCSA) R81.20 [+]
Check Point Certified Security Administrator (CCSA) R81.20 [-]
Les mer
2 dager 16 900 kr
Elasticsearch [+]
Elasticsearch [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Fysiske medier i bruk i lokalnettverk. Nettverkskomponenter. Design av nettverk (nettverk infrastruktur). Trådløse nettverk, design og sikkerhet. Generelt om forskjellige... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: For å kunne gå opp til eksamen må 8 utvalgte øvingsoppgaver være godkjente. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, individuell, 3 timer. Ansvarlig: Arne Bjørn Mikalsen Eksamensdato: 16.12.13 / 19.05.14         Læremål: KUNNSKAPERKandidaten:- kan gjøre rede for de mest brukte teknologiene for lokalnettverk- kan gjøre rede for teknisk oppbygning av nettverk- kan gjøre rede for ulike nettverkskomponenter, deres virkemåte og bruksområde- kan planlegge og vurdere sikkerhet i lokalnettverk FERDIGHETER:Kandidaten:- kan koble til og konfigurere en datamaskin slik at den fungerer i et nettverk med internettoppkobling- kan opprette brukerkontoer, tildele rettigheter, samt administrere nettverk med en ressursdatabase- kan planlegge, implementere og konfigurere et mindre lokalnettverk GENERELL KOMPETANSE:Kandidaten:- har kompetanse til selvstendig både å formidle og å ta i bruk sine kunnskaper og ferdigheter innen emnets tema i en driftssituasjon- kan i en praktisk driftssituasjon, forklare og gjøre bruk av sin kunnskap både innen hvert enkelt tema i faget og på tvers av temaene- kan kommunisere med andre om nettverksløsninger Innhold:Fysiske medier i bruk i lokalnettverk. Nettverkskomponenter. Design av nettverk (nettverk infrastruktur). Trådløse nettverk, design og sikkerhet. Generelt om forskjellige typer nettverksoperativsystem. Introduksjon til Active Directory og eDirectory. Prinsipper for konfigurasjon, installasjon, drift og sikkerhet og driftsfilosofi i lokalnettverk. Introduksjon til virtualisering. Driftsmodeller: Fjerndrift eller ASP (Application Service Provider)Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Drift av lokalnettverk 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Klasserom + nettkurs Drammen Tønsberg Og 5 andre steder 1 semester 21 900 kr
19 Jan
19 Jan
19 Jan
Ta teorikurs (vg3) til fagbrev innen service og administrasjon. K2 tilbyr eksamensforberedende kurs (privatist). Passer for deg som har erfaring innen service og kontorad... [+]
Service- og administrasjonsfaget er for deg som jobber med service og kontoradministrative oppgaver i privat eller offentlig sektor. Kurset gir deg teorien (vg3) som du må ha før du kan avlegge fagprøven Innhold/temaer Lønnsomhet og utvikling hvordan ulike faktorer kan bidra til høyere effektivitet, kvalitet og lønnsomhet i bedriften følge regelverk for arbeidslivet og for helse, miljø og sikkerhet oppfylle miljøkrav og bruke ressurser effektivt Organisasjon og bedriftsstøtte planlegge, organisere, legge til rettefor og utføre oppgaver som støtter drift og styring i virksomheten forstå og arbeide etter måla og kjerneoppgavene til virksomheten hvordan organiseringa av virksomheten påverkar drift og arbeidsoppgaver Kommunikasjon og service gjøre administrative prosesser stadig bedre og mer brukervennlige tilpasse kommunikasjon og service internt og eksternt For mer informasjon se utdanningsdirektoratets sider Udir.no Dette passer for deg som Har erfaring fra service og administrasjonsarbeid og som ønsker å formalisere kompetansen din. Erfaringen din må være relevant og vurderes alltid opp mot læreplanmålene for faget. Gjennomføring Kurset gjennomføres både som klasseromsundervisning og nettundervisning på kveldstid en kveld i uken over ett semester. Her møter du erfarne og dyktige lærere som følger deg på veien til å nå dine mål. Kurset er tilrettelagt slik at du kan kombinere det med fulltidsjobb. CampusKlasseromsundervisning en kveld/dag pr uke på campus. Ett semester NettundervisningLive undervisning en kveld/dag pr uke sammen med andre deltakere via Teams. Opptak gjør det enkelt å repetre fagstoffet. Ett semester.  Du kan se video for hvordan nettundervisning fungerer. Din digitale læringsportal og Oficce 365 I tillegg til undervisningen får du tilgang til K2s digitale læringsportal. Med Office 365 får du student-e-post, Office pakken, tilgang til samhandlingsverktøyet Teams og lagringsplass. Eksamen Som praksiskandidat tar du teorieksamen i lærefaget. Eksamen arrangeres 2 ganger pr år og oppmeldingsfristene er normalt 15. september og 1. februar. Husk at betaling av eksamensavgiften skjer ved oppmelding. Hva må til for å få fagbrev Du må ha bestått teorieksamen for å kunne ta den praktiske fagprøven. I tillegg må du dokumentere min 5 års relevant arbeidspraksis. Fagopplæringskontoret i ditt fylke vurderer din arbeidspraksis og arrangerer fagprøven. Veiledning Vi har veiledere med mange års erfaring som står klare til å hjelpe deg! Er du usikker ta gjerne kontakt med oss for gratis veiledning.  Ønsker du mer informasjon om kurset velg "Send meg info"-knappen under. Vil du chatte med oss, klikk på ikonet nederst i høyre hjørne. Lånekassestøtte Utdanningen er godkjent i lånekassen. Du søker direkte via lanekassen.no. Alt du må vite om lån og stipend fra Lånekassen som deltaker hos K2 utdanning Støtteordning Er du organisert i en fagforening, kan du i de fleste fagforeningene søke støtte til utdanning. Dersom du er organisert bør du sjekke med din fagforening om muligheter for støtte, frister og hvordan du søker. Forkunnskaper Du må ha fullført grunnskole eller tilsvarende opplæring. Minoritetsspråklige bør ha minimum B1-nivå i norsk muntlig og skriftlig. Dersom du har behov for å lære mere norsk før du starter på utdanning har vi norskkurs på forskjellig nivå (A1-B2). Språkkursene er digitale med personlig oppfølging fra lærer. Se alle norskkurs K2 tilbyr. Krav til utstyr Som deltaker hos K2 må du ha tilgang til pc i undervisningen og eksamen. I tillegg trenger du PC-versjonen av Office eller tilsvarende programmer. Online-versjonen som du får tilgang til som deltaker hos K2, kan ikke benyttes på eksamen da denne krever nettilgang. Se hva du har tilgang til av nettbaserte ressurser på eksamen. Praktisk info Du finner mye informasjon om ofte stilte spørsmål på nettsiden vår under praktisk info.   [-]
Les mer
Oslo Bergen 4 dager 22 500 kr
13 Oct
13 Oct
20 Oct
DP-080: Querying Data with Microsoft Transact-SQL [+]
DP-080: Querying Data with Microsoft Transact-SQL [-]
Les mer
4 dager 45 000 kr
01 Sep
29 Sep
20 Oct
DO180: Red Hat OpenShift Administration I: Operating a Production Cluster [+]
DO180: Red Hat OpenShift Administration I: Operating a Production Cluster [-]
Les mer
5 dager 45 000 kr
01 Sep
29 Sep
13 Oct
RH294: Red Hat System Administration III: Linux Automation with Ansible [+]
RH294: Red Hat System Administration III: Linux Automation with Ansible [-]
Les mer
Oslo Bergen 4 dager 28 900 kr
27 Oct
27 Oct
10 Nov
Kubernetes Administration (LFS458) [+]
Kubernetes Administration (LFS458) [-]
Les mer
Klasserom + nettkurs 5 dager 31 000 kr
If you are new to Citrix or if you are planning a move to Citrix Cloud, this course is a necessary step in enabling you with the right training and skills to manage and d... [+]
COURSE OVERVIEW If you are new to Citrix or if you are planning a move to Citrix Cloud, this course is a necessary step in enabling you with the right training and skills to manage and deploy Citrix Workspace successfully. This foundational administration course covers the aspects of installing, configuring and managing a Citrix Virtual Apps and Desktops 7 environment, how to manage an on-premises Citrix solution and migrate from an on-premises solution to cloud using the Citrix Cloud management plane. This five-day course will teach you how to deploy, install, configure, setup profile management, configure policies, printing and basic security features for on-premises Virtual Apps and Desktop solution building, and then migrating to Citrix Cloud. This course includes the exam voucher. TARGET AUDIENCE Experienced IT Professionals who want to be familiar with Citrix Virtual Apps and Desktops 7 in an on-premises environment and Citrix Cloud. Potential students include administrators or engineers responsible for the end user workspace and overall health and performance of the solution. COURSE OBJECTIVES After completing this course you should be able to: Install, configure, and manage a Citrix Virtual Apps and Desktops 7 site and Cloud connectors Identify the considerations between Citrix Virtual Apps and Desktops on-premises and the Citrix Virtual Apps and Desktops Service Deliver app and desktop resources COURSE CONTENT Architecture Overview Introduction to Citrix Virtual Apps and Desktops Architecture Overview Features Hosting Platform Considerations Citrix Virtual Apps and Desktops Service Connection Flow Process Introduction Deploy the Site Pre-Deployment Considerations Citrix Licensing Setup Delivery Controller Setup Site Setup And Management Redundancy Considerations The Apps and Desktops Images Consider Master Image Creation Methods Master Image Requirements Provision and Deliver App and Desktop Resources Machine Catalogs and Delivery Groups Provisioning Methods and Considerations Machine Creation Services (MCS) Deep Dive MCS Environment Considerations Resource Locations Provide Access to App and Desktop Resources  Consider Workspace Experience versus StoreFront  Workspace Experience User Authentication  Workspace App  Communication Flow Manage the User Experience Methods to Manage the User Experience Common User Experience Settings Published App and Desktop Presentation and Management  Published App Properties Server OS Published App Optimizations Published App Presentation Application Groups Apps and Desktops Presentation Manage Printing for User Sessions Map Printers to the User Session Printer Drivers Print Environment Considerations Citrix Profile Management Introduction and Considerations Configure Citrix Profile Management Manage the Site Delegated Administration Use PowerShell with Citrix Virtual Apps and Desktops Power Management Considerations Citrix Virtual Apps and Desktops Basic Security Considerations Citrix Admin Security Considerations XML Service Security Considerations Secure HDX External Traffic Monitor the Site Citrix Director Introduction Monitor and Interact with User Sessions Published Apps Analysis Monitor the Machines Running the VDA Site Specific Common Monitoring Alerts and Notifications Optimize Citrix Director Monitoring with Citrix ADM Introduction to Supporting and Troubleshooting Citrix Virtual Apps and Desktops Introduction to Supporting a Citrix Virtual Apps and Desktops Site Tools Proactive Administration Common Tasks Migrate To Citrix Cloud Migration Considerations Citrix Cloud Connector Deployment Citrix Virtual Apps and Desktops with an On-Premises Resource Location The Migration Process Citrix Analytics Citrix Analytics Introduction Prepare to Use Citrix Analytics Types of Analytics TEST CERTIFICATION Recommended as preparation for the following exams: CCA-V Certification exam. [-]
Les mer
Hensikten med kurset er å oppdatere kontrollører innen G11 Løfteredskap innen standarder, forskrifter osv. som berører en kontrollørs hverdag [+]
Målsetting Hensikten med kurset er å oppdatere kontrollører innen G11 Løfteredskap innen standarder, forskrifter osv. som berører en kontrollørs hverdag Emneliste Innledning Regelverk/standarder Krav til sakkyndig virksomhet Praktisk kontroll Evaluering Dokumentasjon Sertifikater Samsvarserklæring osv. Avslutningsprøve Teoretisk test Kompetansebevis / sertifikat Et kursbevis vil bli utstedt til hver kandidat som har gjennomført og bestått opplæringen. Kursbeviset vil inneholde informasjon om opplæringssted, kursinnhold, dato for gjennomføring, kandidatens navn og fødselsdato og være signert av daglig leder/kurs koordinator. [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer