Alle kategorier
Du har valgt: Køge
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Køge )
 

Nettkurs 12 måneder 4 890 kr
Ta opp historie - nettstudier fra videregående skole hos K2 Utdanning (privatist). Med nettstudier bestemmer du hvor og når du vil lære. [+]
I faget Historie lærer du om verdens- og norgeshistorien, og får innsikt i sammenhenger og konsekvenser av historiske hendelser. Historie er et av fagene du må ha for å oppnå generell studiekompetanse (23/5 regelen) eller som påbygg til fagbrev. Du kan også ta faget for å forbedre karakteren din.  Innhold/temaer Kurset gir deg innsikt i viktige historiske temaer og perioder i norsk og internasjonal historie. Gjennom arbeidet med historiefaget er målet at du skal forstå deg selv og samfunnet bedre. Du vil også kunne orientere deg, ta stilling til og se nåtidige utfordringer i en historisk sammenheng. Gjennom varierte leksjoner utforsker vi mennesker og samfunn i fortid, nåtid og fremtid. Hva mente Maria Antoinette da hun uttalte «La dem spise kake»? Hvorfor ble Julius Cæsar knivstukket 23 ganger på senatgulvet?Kurset er delt opp i følgende temaer:- Historie innledning- Verden blir til: 1500 F.Kr. til 1500- Verden blir mindre: 1500-1800- Verden forandres: 1800-1914- Verden i ubalanse: 1914-1945- Verden i endring: 1945- nå- AvslutningNivået og kurset tilsvarer antall årstimer man har undervisning i historie på vgs. Dette passer for deg som Skal studere på høyskole eller universitet og- trenger studiekompetanse og er 23 år eller eldre, se her for info om 23/5 regelen (6-fagspakken)- har fagbrev (vg1 + vg2) og trenger påbygg for å oppnå studiekompetanse (4-fagspakken)- ønsker å forbedre karakterer fra videregående skole Gjennomføring NettstudierDu bestemmer hvor og når du vil lære. Her får du varierte leksjoner i form av tekster, video, quiz, podcast, veiledning og oppgaver. Du har alltid kontakt med din personlige lærer hos K2. Målet er å gjøre deg best mulig forberedt til eksamen. Din digitale læringsplattform Den nettbaserte læringsportalen til K2 er tilpasset både mobil, nettbrett og pc. Det gir deg enkelt tilgang til å studere faget på en engasjerende og spennende måte, uansett hvor du er. Her kan du prøve historiekurset (gratis) Eksamen Som deltaker ved K2 er du privatist og må ta eksamen i fagene for å få karakter. Historie har muntlig eksamen. Oppmeldingsfristene er normalt 15. september og 1. februar. Husk at betaling av eksamensavgiften skjer ved oppmelding.  Veien videre Med generell studiekompetanse (23/5-regelen og de 6 fagene du kan ta hos oss) eller vitnemål fra studieforberedende program (4 fagene) kan du søke opptakt til høgskoler og universitet. Se praktisk info for frister og opptak til universitet og høyskole. Gratis veiledning Vi har veiledere med mange års erfaring som står klare til å hjelpe deg! Er du usikker på hva som skal til for å få studiekompetanse, ta gjerne kontakt med oss for gratis veiledning.  Ønsker du mer informasjon om kurset velg "Send meg info"-knappen under. Vil du chatte med oss, klikk på ikonet nederst i høyre hjørne. Lånekassestøtte Utdanningen er godkjent i lånekassen. Du søker direkte via lanekassen.no. Alt du må vite om lån og stipend fra Lånekassen som deltaker hos K2 utdanning Støtteordning Er du organisert i en fagforening, kan du i de fleste fagforeningene søke støtte til utdanning. Dersom du er organisert bør du sjekke med din fagforening om muligheter for støtte, frister og hvordan du søker. Forkunnskaper Du må ha fullført grunnskole eller tilsvarende opplæring. Minoritetsspråklige bør ha minimum B1-nivå i norsk muntlig og skriftlig. Dersom du har behov for å lære mere norsk før du starter på utdanning har vi norskkurs på forskjellig nivå (A1-B2). Språkkursene er digitale med personlig oppfølging fra lærer. Se alle norskkurs K2 tilbyr. Krav til utstyr Som deltaker hos K2 må du ha tilgang til pc i undervisningen og eksamen. I tillegg trenger du PC-versjonen av Office eller tilsvarende programmer. Online-versjonen som du får tilgang til som deltaker hos K2, kan ikke benyttes på eksamen da denne krever nettilgang. Se hva du har tilgang til av nettbaserte ressurser på eksamen. Praktisk info Du finner svar på ofte stilte spørsmål på nettsiden vår under praktisk info.   [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettkurs 100 timer 23 900 kr
11 Sep
Er glad i å lage mat og har vært, eller er, ansatt i restaurantbransjen? Eller har tilberedning av mat til mange mennesker vært din arbeidsoppgave i en bedrift? Med et [+]
Er glad i å lage mat og har vært, eller er, ansatt i restaurantbransjen? Eller har tilberedning av mat til mange mennesker vært din arbeidsoppgave i en bedrift? Med et fagbrev i kokkfaget får du dokumentert din kompetanse og kan kalle deg faglært kokk.  Teori til fagbrev er første steg på veien.   [-]
Les mer
Nettkurs 10 000 kr
Nettkurs uten samlinger med nettressurser. [+]
Kurset passer for: deg som har design og håndverk vg1 eller formgivingsfag grunnkurs samt fellesfagene/allmennfagene fra vg1 og vg2/grunnkurs og vk-1. deg som har lang praksis i yrket og som ønsker å ta fagprøven (praksiskandidat).   Kursets innhold er: Felles programfag: Aktiviseringsfag - Administrasjonsfag Nettkurs uten samlinger med nettressurser.   Start:              Når du selv ønsker. Omfang:          3 innleveringer Pris:                Felles programfag: Kr. 10.000,- ekskl. lærebøker og eksamensavgift (kan deles i 4 månedlige avdrag med kr. 200,- i  avdragsgebyr pr. avdrag)   Tidsplan • Kurset kan tas etter egen tidsplan med innlevering av mapper til retting. • Du velger selv når du vil starte opp med kurset og hvor lang tid du vil bruke.   Innleveringer • Det er i alt 3 innleveringer – 1 for hvert fag i tillegg til en tverrfaglig oppgave • Kurset er i tråd med læreplanens kompetansemål.   Det følger med ulike nettressurser som du kan benytte så mye og så ofte du vil.   Lånekassen Utdanningen er godkjent for lån og stipend i Lånekassen. For å få lån omgjort til stipend kreves det at deltaker avlegger privatisteksamen i samtlige fag som utgjør 4 eksamener eller avlegger den teoretiske prøven som inngår i fagprøven.   Eksamensform  Privatisteksamen etter gjeldende regler. Oppmelding elektronisk: www.privatistweb.no Fører frem til fagbrev.   Fagprøven som praksiskandidat: Fagprøven består av en teoretisk del og en praktisk del. Dette gjelder for praksiskandidater – de som har minst 5 års godkjent praksis fra yrket, avlegger teoretisk del av fagprøve i tillegg til den praktiske fagprøven.  Det kreves ikke dokumentert praksis for å avlegge den teoretiske prøven.  For å kunne fremstille seg til den praktiske del av fagprøven kreves det dokumentasjon på 5 års godkjent praksis. Praksis vurderes av fylkeskommunen hvor du bor.   Fagprøven for de som følger skolemodellen (lærlinger): Har du allmennfagene fra ordinær videregående skole, anbefaler vi deg å ta privatisteksamen i samtlige programfag for vg1 og vg2. Du kan da søke lærlingeplass for 2 år. De som er lærlinger må ta eksamen i hvert enkelt fag for vg1 og for vg2 i tillegg til teoretisk og praktisk fagprøve.   Om jobben Som aktivitør skal du legge til rette for kreative aktiviteter for ulike brukergrupper som eldre, psykisk utviklingshemmede og psykisk- eller fysisk funksjonshemmede. Aktivitetene kan for eksempel være husflids- og handverksaktiviteter, fysiske aktiviteter av ulike slag, eller dagligdagse gjøremål.    Målsettingen er å opprettholde eller å forbedre brukernes funksjonsnivå bade fysisk, psykisk og intellektuelt.    Vanlige arbeidsoppgaver for en aktivitør er: • planlegge,lede, gjennomføre aktiviteter • vurdere og dokumentere aktiviteter • utvikle, kvalitetssikre og markedsføre aktiviteter   Personlige egenskaper Som aktivitør bør du være kreativ og ha evne til a finne praktiske løsninger på utfordringer som dukker opp. Kommunikasjon, forståelse og evne til a komme kontakt med ulike typer mennesker er også typiske egenskaper ved aktivitøren. Tillegg må du ha kunnskap om menneskets naturlige utvikling, førstehjelp og enkel sykdomslære.   Hvor jobber aktivitøren? Som aktivitør kan du jobbe i ulike helseinstitusjoner, hjemmebaserte tjenester, kultur- og fritidssektoren, rusomsorgen, skole, SFO, frivillighetssentralen eller i private vernede bedrifter. Som aktivitør jobber du ofte med eldre, psykisk utviklingshemmede, funksjonshemmede, barn, ungdom og andre grupper med behov for rehabilitering.   Er du organisert? Undersøk med ditt fagforbund om du kan søke å få dekket kursavgift.   Dersom du ønsker å komme i kontakt med studieekspert kan du trygt ta kontakt med oss på telefon: 913 58 038 eller sende oss E-post til: postmottak@kompetansesenter-bedriftshjelp.com [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to provide accurate and reliable information about the configuration of services and configuration support items when and where it is needed. [+]
Understand the purpose and key concepts of Service Configuration Management, including its role in maintaining accurate and reliable information about configuration items (CIs) within the IT infrastructure. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content Mobile-optimised Practical exercises   Exam: 20 questions Multiple Choice 30 Minutes Closed book Pass Mark: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 75 minutter 6 000 kr
Foundation Level-sertifiseringen introduserer PRINCE2®-metoden og tar sikte på å bekrefte at du kjenner og forstår PRINCE2®-metoden godt nok til å kunne arbeide effektivt... [+]
Du vil få tilsendt en «Core guidance» bok og sertifiserings-voucher i en e-post fra Peoplecert. Denne vil være gyldig i ett år. Tid for sertifiseringstest avtales som beskrevet i e-post med voucher. Eksamen overvåkes av en web-basert eksamensvakt.   Eksamen er på engelsk. Eksamensformen er multiple choice 60 spørsmål skal besvares, og du består ved 55% korrekte svar (dvs 33 av 60 spørsmål). Deltakerne har 1 time til rådighet på eksamen.  Ingen hjelpemidler er tillatt.   ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to ensure that the organisation’s suppliers and their performances are managed appropriately to support the seamless provision of quality pr... [+]
Understand the purpose and key concepts of the Supplier Management Practice, elucidating its importance in managing supplier relationships and ensuring value delivery from third-party services. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
4 dager 45 000 kr
09 Jun
07 Jul
11 Aug
DO180: Red Hat OpenShift Administration I: Operating a Production Cluster [+]
DO180: Red Hat OpenShift Administration I: Operating a Production Cluster [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 26 500 kr
23 Jun
23 Jun
29 Sep
AZ-204: Developing Solutions for Microsoft Azure [+]
AZ-204: Developing Solutions for Microsoft Azure [-]
Les mer
Klasserom + nettkurs 2 semester 45 000 kr
Mange arbeidsgivere etterspør kunnskap om digital markedsføring. Lær deg å lage godt, engasjerende digitalt innhold brukerne dine vil ha. [+]
Etter kurset Digital markedsføring, skal du ha grunnleggende kunnskaper innen dataanalyse og kjenne til digitale mediers rolle innen markedsføring. Du skal beherske digital markedsføring, strategi og planlegging, samt jus og etikk innenfor samme tema. Du skal bli i stand til å analysere effekten av strategi og kampanjer. Du skal vite hvordan nettsidene optimaliseres, samt hvordan man etablerer og drifter digitale annonser. Du skal kunne lede digitale kampanjer og ha kunnskap om hvilken betydning en god digital strategi har innen digital markedsføring. Studiet er både praktisk og teoretisk rettet – med hovedvekt på å løse praktiske obligatoriske oppgaveløsning basert på teoretisk kunnskap. Studentene vil gjennom studieåret gjennomføre en rekke individuelle og gruppebaserte praktiske og teoretiske oppgaver knyttet til de forskjellige undertema. [-]
Les mer
Virtuelt klasserom 2 dager 17 500 kr
This TOGAF® 9.2 Training Course: Level 1 Foundation introduces the latest version of TOGAF and will help you to prepare to take The Open Group's examination leading to t... [+]
COURSE OVERVIEW This course introduces all of thetopics defined as the Learning Outcomes upon which the TOGAF® 9.2  Part 1 Examination is based to the level needed to pass the examination. Candidates should be aware that this course does not address these topics in detail and additional study is required. This TOGAF® for Practitioners - Level 1 Foundation course is accredited by The Open Group. TOGAF® is a registered trademark of The Open Group. TARGET AUDIENCE Enterprise Architect Solution Architect ERP/SAP Architect Data Architect Technical Architect Security Architect EA/ Governance Consultant Business Analyst.   COURSE CONTENT The 2 day course introduces many of the features that are common to TOGAF® 9.2: The business rationale for Enterprise Architecture and TOGAF® The TOGAF® Architecture Development Method and its deliverables, including Business, Data, Applications and Technology Architecture The Enterprise Continuum Enterprise Architecture Governance Architecture Principles and their development Architecture Views and Viewpoints An Introduction to Building Blocks Architecture Partitioning Content Framework and Meta Model Capability Based Planning Business Transformation Readiness Architecture Repository   TEST CERTIFICATION This course prepares candidates for the TOGAF® 9.2 Part 1 examination The exam (60 minutes) is in closed-book format, and includes 40 multiple-choice questions. The passing score is 55% (22 out of 40 questions) An examination voucher is provided as part of this course, delegates are required to self book at a time and location that is convenient to themselves.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører   [-]
Les mer
Oslo 3 dager 17 900 kr
25 Aug
25 Aug
24 Nov
Managing Benefits™ Foundation [+]
Managing Benefits™ Foundation [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer