Alle kategorier
Du har valgt: Odense
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Odense )
 

Nettkurs 10 000 kr
Nettkurs uten samlinger med nettforelesninger. [+]
Kurset passer for: deg som skal bli: apotektekniker – helsesekretær - tannhelsesekretær deg som har helse- og sosialfag vg1 eller grunnkurs samt fellesfagene/allmennfagene fra vg1 og vg2/grunnkurs og vk-1. Kursets innhold er: Felles programfag: Helsefremmende arbeid • Kommunikasjon og samhandling • Yrkesutøvelse

Nettkurs kombinert med forelesninger i form av lyd og bilde på din egen PC. Felles programfag: Helsefremmende arbeid • Kommunikasjon og samhandling • Yrkesutøvelse

Nettkurs kombinert med forelesninger i form av lyd og bilde på din egen PC. Start:          Når du selv ønskerOmfang:      En innlevering for hvert fag – i alt 3Pris:            Felles programfag: Kr. 10.000,- ekskl. lærebøker og eksamensavgift                    (kan deles i 4 månedlige avdrag med kr. 200,- i avdragsgebyr pr. avdragTidsplan Kurset kan tas etter egen tidsplan med innlevering av mapper til retting. Du velger selv når du vil starte opp med kurset og hvor lang tid du vil bruke. Innleveringer En innlevering for hvert fag – i alt 3. Kurset er i tråd med læreplanens kompetansemål. Det følger med ulike nettressurser som du kan benytte så mye og så ofte du vil.Lånekassen  Utdanningen er godkjent for lån og stipend i Lånekassen. For å få lån omgjort til stipend kreves det at deltaker avlegger privatisteksamen i samtlige fag som utgjør 4 eksamener.Eksamensform  Privatisteksamen etter gjeldende regler. Oppmelding elektronisk: www.privatistweb.no Fører frem til fagbrev. Er du organisert? Undersøk med ditt fagforbund om du kan søke å få dekket kursavgift. Er du organisert? Undersøk med ditt fagforbund om du kan søke å få dekket kursavgift. [-]
Les mer
Nettkurs 18 måneder 14 370 kr
Realfag passer for deg som trenger å forbedre karakteren i faget, eller som trenger fordypning for videre studier på høgskole eller universitet. [+]
Ingeniørpakken gir til sammen 2 realfagspoeng og passer for deg som vil bli ingeniør, men som mangler fag eller må forbedre fagene. Har du studiekompetanse, men mangler realfag for å kunne søke ingeniørstudier? Fagene du trenger, er matematikk R1 og R2 og fysikk 1. Her kan du prøve Matematikk eller Fysikk (gratis). Gjennomføring NettstudierDu bestemmer hva, hvor og når du vil lære. Her får du varierte leksjoner i form av tekster, video, quiz, podcast, veiledning og oppgaver. Du har alltid kontakt med din personlige lærer hos K2. Målet er å gjøre deg best mulig forberedt til eksamen. Her kan du prøve alle kursene (gratis). Din digitale læringsplattform Den nettbaserte læringsportalen til K2 er tilpasset både mobil, nettbrett og pc. Det gir deg enkelt tilgang til å studere faget på en engasjerende og spennende måte, uansett hvor du er.  Eksamen Som deltaker ved K2 er du privatist og må ta eksamen i fagene for å få karakter. Oppmeldingsfristene er normalt 15. september og 1. februar. Husk at betaling av eksamensavgiften skjer ved oppmelding.  Velg Ingeniørpakken og få tilgang til Fysikk 1, Matematikk R1 og Matematikk R2 i 12 måneder. Du velger selv når du vil ta eksamen.  Fysikk 1, eksamen nov/des eller mai/juni Matematikk R1, eksamen nov/des eller mai/juni Matematikk R2, eksamen nov/des eller mai/juni Veien videre Om du har generell studiekompetanse (GENS) og velger å ta fagene fysikk 1 og matematikk R1 og R2 som privatist, da oppfyller du opptakskravene til flere studier, inkludert ingeniørstudier. Se praktisk info for frister og opptak til universitet og høyskole. Gratis veiledning Vi har veiledere med mange års erfaring som står klare til å hjelpe deg! Er du usikker på hva som skal til for å få studiekompetanse, ta gjerne kontakt med oss for gratis veiledning.  Ønsker du mer informasjon om kurset, velg "Send meg info"-knappen under. Vil du chatte med oss, klikk på ikonet nederst i høyre hjørne. Lånekassestøtte Utdanningen er godkjent i lånekassen. Du søker direkte via lanekassen.no. Alt du må vite om lån og stipend fra Lånekassen som deltaker hos K2 utdanning Støtteordning Er du organisert i en fagforening, kan du i de fleste fagforeningene søke støtte til utdanning. Dersom du er organisert bør du sjekke med din fagforening om muligheter for støtte, frister og hvordan du søker. Forkunnskaper Du må ha fullført grunnskole eller tilsvarende opplæring. Minoritetsspråklige bør ha minimum B1-nivå i norsk muntlig og skriftlig. Dersom du har behov for å lære mere norsk før du starter på utdanning har vi norskkurs på forskjellig nivå (A1-B2). Språkkursene er digitale med personlig oppfølging fra lærer. Se alle norskkurs K2 tilbyr. Krav til utstyr Som deltaker hos K2 må du ha tilgang til pc på eksamen. I tillegg trenger du PC-versjonen av Office eller tilsvarende programmer. Se hva du har tilgang til av nettbaserte ressurser på eksamen. Praktisk info Du finner svar på ofte stilte spørsmål på nettsiden vår under praktisk info.     [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Nettkurs 4 500 kr
Nettkurs eller brevkurs kombinert med forelesninger i form av lyd og bilde på din egen PC. [+]
Vårt lederkurs gir deg grunnleggende kunnskaper om motiverende ledelse. Kurset skal gi deltakerne en faglig forståelse for ulike utfordringer knyttet til ledelse der mellommenneskelige relasjoner inngår. Nettkurs eller brevkurs kombinert med forelesninger i form av lyd og bilde på din egen PC.     Start:         Når du selv ønsker. Omfang:     3 innleveringer Pris:           kr. 4.500,- (kan deles i 4 månedlige avdrag med                    kr. 200,- i avdragsgebyr for hvert avdrag).    Tidsplan • Kurset kan tas etter egen tidsplan med innlevering av besvarelser til veiledning. • Du velger selv når du vil starte opp med lederkurset og hvor lang tid du vil      bruke.   Innleveringer • Innlevering av 3 besvarelser   Målgruppe for vårt lederkurs Alle som har et verv eller arbeid, eller ønsker et verv eller arbeid der mellommenneskelige relasjoner og ledelse inngår.   Mål for lederkurset Kurset skal gi deltakerne en faglig forståelse for ulike utfordringer knyttet til lederverv og ledelse.   Kursbeskrivelse Vårt lederkurs gir deg grunnleggende kunnskaper om ledelse.   Tema - Lederkurs • Ledelse i dag • Dagens utfordringer • Dagens muligheter • Ledelsesteori • Administrasjon • Organisasjon • Lederkompetanse • Hvor læres denne kompetansen? • Ledertyper • Personlighet • Kommunikasjon • Hva er god kommunikasjon? • Hvilke utfordringer møter vi i kommunikasjon? • Relasjonskompetanse • Makt • Tillit • Motivasjon • Kreativitet • Behov • Gruppe • Team • Utvikling • Vi-følelse • Helhetlig tenking   Litteratur Relasjonell ledelse Hans Morten Skivik ISBN 9788205329669 Gyldendal 2004   Vurdering  Bestått/ikke bestått.   Kursbevis  Kursbevis utstedes til de som har bestått og som har betalt kursavgiften i sin helhet.   Er du organisert? Undersøk med ditt fagforbund om du kan søke å få dekket kursavgiften for vårt lederkurs.   Dersom du ønsker å komme i kontakt med studieekspert kan du trygt ta kontakt med oss på telefon: 913 58 038913 58 038 eller sende oss E-post til: postmottak@kompetansesenter-bedriftshjelp.com Vi har lang erfaring med kurs og studier og vet hva som vil passe deg best etter en kort og uforpliktende samtale. [-]
Les mer
Virtuelt klasserom 4 dager 22 000 kr
Learn how to investigate, respond to, and hunt for threats using Microsoft Azure Sentinel, Azure Defender, and Microsoft 365 Defender. [+]
COURSE OVERVIEW Learn how to investigate, respond to, and hunt for threats using Microsoft Azure Sentinel, Azure Defender, and Microsoft 365 Defender. In this course you will learn how to mitigate cyberthreats using these technologies. Specifically, you will configure and use Azure Sentinel as well as utilize Kusto Query Language (KQL) to perform detection, analysis, and reporting. The course was designed for people who work in a Security Operations job role and helps learners prepare for the exam SC-200: Microsoft Security Operations Analyst. TARGET AUDIENCE The Microsoft Security Operations Analyst collaborates with organizational stakeholders to secure information technology systems for the organization. Their goal is to reduce organizational risk by rapidly remediating active attacks in the environment, advising on improvements to threat protection practices, and referring violations of organizational policies to appropriate stakeholders. Responsibilities include threat management, monitoring, and response by using a variety of security solutions across their environment. The role primarily investigates, responds to, and hunts for threats using Microsoft Azure Sentinel, Azure Defender, Microsoft 365 Defender, and third-party security products. Since the Security Operations Analyst consumes the operational output of these tools, they are also a critical stakeholder in the configuration and deployment of these technologies. COURSE OBJECTIVES Explain how Microsoft Defender for Endpoint can remediate risks in your environment Create a Microsoft Defender for Endpoint environment Configure Attack Surface Reduction rules on Windows 10 devices Perform actions on a device using Microsoft Defender for Endpoint Investigate domains and IP addresses in Microsoft Defender for Endpoint Investigate user accounts in Microsoft Defender for Endpoint Configure alert settings in Microsoft Defender for Endpoint Explain how the threat landscape is evolving Conduct advanced hunting in Microsoft 365 Defender Manage incidents in Microsoft 365 Defender Explain how Microsoft Defender for Identity can remediate risks in your environment. Investigate DLP alerts in Microsoft Cloud App Security Explain the types of actions you can take on an insider risk management case. Configure auto-provisioning in Azure Defender Remediate alerts in Azure Defender Construct KQL statements Filter searches based on event time, severity, domain, and other relevant data using KQL Extract data from unstructured string fields using KQL Manage an Azure Sentinel workspace Use KQL to access the watchlist in Azure Sentinel Manage threat indicators in Azure Sentinel Explain the Common Event Format and Syslog connector differences in Azure Sentinel Connect Azure Windows Virtual Machines to Azure Sentinel Configure Log Analytics agent to collect Sysmon events Create new analytics rules and queries using the analytics rule wizard Create a playbook to automate an incident response Use queries to hunt for threats Observe threats over time with livestream COURSE CONTENT Module 1: Mitigate threats using Microsoft Defender for Endpoint Implement the Microsoft Defender for Endpoint platform to detect, investigate, and respond to advanced threats. Learn how Microsoft Defender for Endpoint can help your organization stay secure. Learn how to deploy the Microsoft Defender for Endpoint environment, including onboarding devices and configuring security. Learn how to investigate incidents and alerts using Microsoft Defender for Endpoints. Perform advanced hunting and consult with threat experts. You will also learn how to configure automation in Microsoft Defender for Endpoint by managing environmental settings.. Lastly, you will learn about your environment's weaknesses by using Threat and Vulnerability Management in Microsoft Defender for Endpoint. Lessons M1 Protect against threats with Microsoft Defender for Endpoint Deploy the Microsoft Defender for Endpoint environment Implement Windows 10 security enhancements with Microsoft Defender for Endpoint Manage alerts and incidents in Microsoft Defender for Endpoint Perform device investigations in Microsoft Defender for Endpoint Perform actions on a device using Microsoft Defender for Endpoint Perform evidence and entities investigations using Microsoft Defender for Endpoint Configure and manage automation using Microsoft Defender for Endpoint Configure for alerts and detections in Microsoft Defender for Endpoint Utilize Threat and Vulnerability Management in Microsoft Defender for Endpoint Lab M1: Mitigate threats using Microsoft Defender for Endpoint Deploy Microsoft Defender for Endpoint Mitigate Attacks using Defender for Endpoint After completing module 1, students will be able to: Define the capabilities of Microsoft Defender for Endpoint Configure Microsoft Defender for Endpoint environment settings Configure Attack Surface Reduction rules on Windows 10 devices Investigate alerts in Microsoft Defender for Endpoint Describe device forensics information collected by Microsoft Defender for Endpoint Conduct forensics data collection using Microsoft Defender for Endpoint Investigate user accounts in Microsoft Defender for Endpoint Manage automation settings in Microsoft Defender for Endpoint Manage indicators in Microsoft Defender for Endpoint Describe Threat and Vulnerability Management in Microsoft Defender for Endpoint Module 2: Mitigate threats using Microsoft 365 Defender Analyze threat data across domains and rapidly remediate threats with built-in orchestration and automation in Microsoft 365 Defender. Learn about cybersecurity threats and how the new threat protection tools from Microsoft protect your organization’s users, devices, and data. Use the advanced detection and remediation of identity-based threats to protect your Azure Active Directory identities and applications from compromise. Lessons M2 Introduction to threat protection with Microsoft 365 Mitigate incidents using Microsoft 365 Defender Protect your identities with Azure AD Identity Protection Remediate risks with Microsoft Defender for Office 365 Safeguard your environment with Microsoft Defender for Identity Secure your cloud apps and services with Microsoft Cloud App Security Respond to data loss prevention alerts using Microsoft 365 Manage insider risk in Microsoft 365 Lab M2: Mitigate threats using Microsoft 365 Defender Mitigate Attacks with Microsoft 365 Defender After completing module 2, students will be able to: Explain how the threat landscape is evolving. Manage incidents in Microsoft 365 Defender Conduct advanced hunting in Microsoft 365 Defender Describe the investigation and remediation features of Azure Active Directory Identity Protection. Define the capabilities of Microsoft Defender for Endpoint. Explain how Microsoft Defender for Endpoint can remediate risks in your environment. Define the Cloud App Security framework Explain how Cloud Discovery helps you see what's going on in your organization Module 3: Mitigate threats using Azure Defender Use Azure Defender integrated with Azure Security Center, for Azure, hybrid cloud, and on-premises workload protection and security. Learn the purpose of Azure Defender, Azure Defender's relationship to Azure Security Center, and how to enable Azure Defender. You will also learn about the protections and detections provided by Azure Defender for each cloud workload. Learn how you can add Azure Defender capabilities to your hybrid environment. Lessons M3 Plan for cloud workload protections using Azure Defender Explain cloud workload protections in Azure Defender Connect Azure assets to Azure Defender Connect non-Azure resources to Azure Defender Remediate security alerts using Azure Defender Lab M3: Mitigate threats using Azure Defender Deploy Azure Defender Mitigate Attacks with Azure Defender After completing module 3, students will be able to: Describe Azure Defender features Explain Azure Security Center features Explain which workloads are protected by Azure Defender Explain how Azure Defender protections function Configure auto-provisioning in Azure Defender Describe manual provisioning in Azure Defender Connect non-Azure machines to Azure Defender Describe alerts in Azure Defender Remediate alerts in Azure Defender Automate responses in Azure Defender Module 4: Create queries for Azure Sentinel using Kusto Query Language (KQL) Write Kusto Query Language (KQL) statements to query log data to perform detections, analysis, and reporting in Azure Sentinel. This module will focus on the most used operators. The example KQL statements will showcase security related table queries. KQL is the query language used to perform analysis on data to create analytics, workbooks, and perform hunting in Azure Sentinel. Learn how basic KQL statement structure provides the foundation to build more complex statements. Learn how to summarize and visualize data with a KQL statement provides the foundation to build detections in Azure Sentinel. Learn how to use the Kusto Query Language (KQL) to manipulate string data ingested from log sources. Lessons M4 Construct KQL statements for Azure Sentinel Analyze query results using KQL Build multi-table statements using KQL Work with data in Azure Sentinel using Kusto Query Language Lab M4: Create queries for Azure Sentinel using Kusto Query Language (KQL) Construct Basic KQL Statements Analyze query results using KQL Build multi-table statements using KQL Work with string data using KQL statements After completing module 4, students will be able to: Construct KQL statements Search log files for security events using KQL Filter searches based on event time, severity, domain, and other relevant data using KQL Summarize data using KQL statements Render visualizations using KQL statements Extract data from unstructured string fields using KQL Extract data from structured string data using KQL Create Functions using KQL Module 5: Configure your Azure Sentinel environment Get started with Azure Sentinel by properly configuring the Azure Sentinel workspace. Traditional security information and event management (SIEM) systems typically take a long time to set up and configure. They're also not necessarily designed with cloud workloads in mind. Azure Sentinel enables you to start getting valuable security insights from your cloud and on-premises data quickly. This module helps you get started. Learn about the architecture of Azure Sentinel workspaces to ensure you configure your system to meet your organization's security operations requirements. As a Security Operations Analyst, you must understand the tables, fields, and data ingested in your workspace. Learn how to query the most used data tables in Azure Sentinel. Lessons M5 Introduction to Azure Sentinel Create and manage Azure Sentinel workspaces Query logs in Azure Sentinel Use watchlists in Azure Sentinel Utilize threat intelligence in Azure Sentinel Lab M5 : Configure your Azure Sentinel environment Create an Azure Sentinel Workspace Create a Watchlist Create a Threat Indicator After completing module 5, students will be able to: Identify the various components and functionality of Azure Sentinel. Identify use cases where Azure Sentinel would be a good solution. Describe Azure Sentinel workspace architecture Install Azure Sentinel workspace Manage an Azure Sentinel workspace Create a watchlist in Azure Sentinel Use KQL to access the watchlist in Azure Sentinel Manage threat indicators in Azure Sentinel Use KQL to access threat indicators in Azure Sentinel Module 6: Connect logs to Azure Sentinel Connect data at cloud scale across all users, devices, applications, and infrastructure, both on-premises and in multiple clouds to Azure Sentinel. The primary approach to connect log data is using the Azure Sentinel provided data connectors. This module provides an overview of the available data connectors. You will get to learn about the configuration options and data provided by Azure Sentinel connectors for Microsoft 365 Defender. Lessons M6 Connect data to Azure Sentinel using data connectors Connect Microsoft services to Azure Sentinel Connect Microsoft 365 Defender to Azure Sentinel Connect Windows hosts to Azure Sentinel Connect Common Event Format logs to Azure Sentinel Connect syslog data sources to Azure Sentinel Connect threat indicators to Azure Sentinel Lab M6: Connect logs to Azure Sentinel Connect Microsoft services to Azure Sentinel Connect Windows hosts to Azure Sentinel Connect Linux hosts to Azure Sentinel Connect Threat intelligence to Azure Sentinel After completing module 6, students will be able to: Explain the use of data connectors in Azure Sentinel Explain the Common Event Format and Syslog connector differences in Azure Sentinel Connect Microsoft service connectors Explain how connectors auto-create incidents in Azure Sentinel Activate the Microsoft 365 Defender connector in Azure Sentinel Connect Azure Windows Virtual Machines to Azure Sentinel Connect non-Azure Windows hosts to Azure Sentinel Configure Log Analytics agent to collect Sysmon events Explain the Common Event Format connector deployment options in Azure Sentinel Configure the TAXII connector in Azure Sentinel View threat indicators in Azure Sentinel Module 7: Create detections and perform investigations using Azure Sentinel Detect previously uncovered threats and rapidly remediate threats with built-in orchestration and automation in Azure Sentinel. You will learn how to create Azure Sentinel playbooks to respond to security threats. You'll investigate Azure Sentinel incident management, learn about Azure Sentinel events and entities, and discover ways to resolve incidents. You will also learn how to query, visualize, and monitor data in Azure Sentinel. Lessons M7 Threat detection with Azure Sentinel analytics Threat response with Azure Sentinel playbooks Security incident management in Azure Sentinel Use entity behavior analytics in Azure Sentinel Query, visualize, and monitor data in Azure Sentinel Lab M7: Create detections and perform investigations using Azure Sentinel Create Analytical Rules Model Attacks to Define Rule Logic Mitigate Attacks using Azure Sentinel Create Workbooks in Azure Sentinel After completing module 7, students will be able to: Explain the importance of Azure Sentinel Analytics. Create rules from templates. Manage rules with modifications. Explain Azure Sentinel SOAR capabilities. Create a playbook to automate an incident response. Investigate and manage incident resolution. Explain User and Entity Behavior Analytics in Azure Sentinel Explore entities in Azure Sentinel Visualize security data using Azure Sentinel Workbooks. Module 8: Perform threat hunting in Azure Sentinel In this module, you'll learn to proactively identify threat behaviors by using Azure Sentinel queries. You'll also learn to use bookmarks and livestream to hunt threats. You will also learn how to use notebooks in Azure Sentinel for advanced hunting. Lessons M8 Threat hunting with Azure Sentinel Hunt for threats using notebooks in Azure Sentinel Lab M8 : Threat hunting in Azure Sentinel Threat Hunting in Azure Sentinel Threat Hunting using Notebooks After completing this module, students will be able to: Describe threat hunting concepts for use with Azure Sentinel Define a threat hunting hypothesis for use in Azure Sentinel Use queries to hunt for threats. Observe threats over time with livestream. Explore API libraries for advanced threat hunting in Azure Sentinel Create and use notebooks in Azure Sentinel [-]
Les mer
Nettstudie 18 200 kr
Byggdrifterfaget dekker teorien etter læreplankode BDR03-02, fagkode BDR3103. [+]
Byggdrifterfaget er et studium på yrkesfaglig studieretning ved NooA videregående skole   En byggdrifter, også kalt vaktmester eller driftsoperatør, drifter og vedlikeholder lokaler, inventar og utstyr i et bygg. Byggdrifteren tar seg av vedlikehold og mindre reparasjoner, mens andre fagfolk tar seg av større problemer ved bygg og anlegg.     [-]
Les mer
Virtuelt klasserom 5 dager 31 000 kr
This five-day VMware course features intensive hands-on training that focuses on installing, configuring, and managing VMware vSphere 8, which includes VMware ESXi 8 and ... [+]
COURSE OVERVIEW  This course prepares you to administer a vSphere infrastructure for an organization of any size. This course is the foundation for most VMware technologies in the software-defined data center. Product Alignment: VMware ESXi 8.0 VMware vCenter 8.0 TARGET AUDIENCE System administrators System engineers COURSE OBJECTIVES By the end of the course, you should be able to meet the following objectives: Install and configure ESXi hosts Deploy and configure vCenter Use the vSphere Client to create the vCenter inventory and assign roles to vCenter users Create virtual networks using vSphere standard switches and distributed switches Create and configure datastores using storage technologies supported by vSphere Use the vSphere Client to create virtual machines, templates, clones, and snapshots Create content libraries for managing templates and deploying virtual machines Manage virtual machine resource allocation Migrate virtual machines with vSphere vMotion and vSphere Storage vMotion Create and configure a vSphere cluster that is enabled with vSphere High Availability (HA) and vSphere Distributed Resource Scheduler Manage the life cycle of vSphere to keep vCenter, ESXi hosts, and virtual machines up to date COURSE CONTENT 1 Course Introduction Introductions and course logistics Course objectives 2 vSphere and Virtualization Overview Explain basic virtualization concepts Describe how vSphere fits in the software-defined data center and the cloud infrastructure Recognize the user interfaces for accessing vSphere Explain how vSphere interacts with CPUs, memory, networks, storage, and GPUs 3 Installing and Configuring ESXi Install an ESXi host Recognize ESXi user account best practices Configure the ESXi host settings using the DCUI and VMware Host Client 4 Deploying and Configuring vCenter Recognize ESXi hosts communication with vCenter Deploy vCenter Server Appliance Configure vCenter settings Use the vSphere Client to add and manage license keys Create and organize vCenter inventory objects Recognize the rules for applying vCenter permissions View vCenter logs and events 5 Configuring vSphere Networking Configure and view standard switch configurations Configure and view distributed switch configurations Recognize the difference between standard switches and distributed switches Explain how to set networking policies on standard and distributed switches 6 Configuring vSphere Storage Recognize vSphere storage technologies Identify types of vSphere datastores Describe Fibre Channel components and addressing Describe iSCSI components and addressing Configure iSCSI storage on ESXi Create and manage VMFS datastores Configure and manage NFS datastores 7 Deploying Virtual Machines Create and provision VMs Explain the importance of VMware Tools Identify the files that make up a VM Recognize the components of a VM Navigate the vSphere Client and examine VM settings and options Modify VMs by dynamically increasing resources Create VM templates and deploy VMs from them Clone VMs Create customization specifications for guest operating systems Create local, published, and subscribed content libraries Deploy VMs from content libraries Manage multiple versions of VM templates in content libraries 8 Managing Virtual Machines Recognize the types of VM migrations that you can perform within a vCenter instance and across vCenter instances Migrate VMs using vSphere vMotion Describe the role of Enhanced vMotion Compatibility in migrations Migrate VMs using vSphere Storage vMotion Take a snapshot of a VM Manage, consolidate, and delete snapshots Describe CPU and memory concepts in relation to a virtualized environment Describe how VMs compete for resources Define CPU and memory shares, reservations, and limits 9 Deploying and Configuring vSphere Clusters Create a vSphere cluster enabled for vSphere DRS and vSphere HA View information about a vSphere cluster Explain how vSphere DRS determines VM placement on hosts in the cluster Recognize use cases for vSphere DRS settings Monitor a vSphere DRS cluster Describe how vSphere HA responds to various types of failures Identify options for configuring network redundancy in a vSphere HA cluster Recognize vSphere HA design considerations Recognize the use cases for various vSphere HA settings Configure a vSphere HA cluster Recognize when to use vSphere Fault Tolerance 10 Managing the vSphere Lifecycle Enable vSphere Lifecycle Manager in a vSphere cluster Describe features of the vCenter Update Planner Run vCenter upgrade prechecks and interoperability reports Recognize features of vSphere Lifecycle Manager Distinguish between managing hosts using baselines and managing hosts using images Describe how to update hosts using baselines Describe ESXi images Validate ESXi host compliance against a cluster image and update ESXi hosts Update ESXi hosts using vSphere Lifecycle Manager Describe vSphere Lifecycle Manager automatic recommendations Use vSphere Lifecycle Manager to upgrade VMware Tools and VM hardware   [-]
Les mer
1 dag
Kurset er beregnet for el kontrollører som er sertifisert eller skal sertifisere seg i normsamlingen. [+]
NEK405 (eks. NEK405-2 elkontroll bolig eller NEK405-3 elkontroll næring). Kurset kan også være nyttig for montører, saksbehandlere, installatører, og kontrollører hos sakkyndig selskap eller DLE. Kursets mål: ·       Du skal kunne skrive en rapport som tilfredsstiller kravene i NEK405-3 elkontroll næring. ·       Du skal bli litt sikrere på hva som er et elektroavvik, og hvordan avvik kan hjemles. Innehold: ·       Hvordan skrive en rapport, som «tilfredsstiller» kravet i NEK405-3 elkontroll næring. ·       Hva er mandatet for kontrollen. ·       Hvordan sette referansenivå for kontrollen. ·       Hva sier FEL §1 Formål, og § 12 Dokumentasjon. ·       Vi går gjennom noen av sikkerhetskravene i FEL, og diskuterer det vi ser på bl.a. bilder. Er dette avvik eller ikke. ·       Hvordan hjemler vi et avvik. [-]
Les mer
Nettstudie 6 900 kr
Alle læremidler inngår i prisen. Nettkurset følger læreplanen i matematikk P Vg1 på videregående skole MAT08-01. [+]
Matematikk 1P Vg1 Generell studiekompetanse Dette nettkurset gir deg kunnskap innen matematikk P Vg1 på videregående skole. Sammen med Matematikk P2 dekker kurset kravene til generell studiekompetanse i matematikk. Varighet: Du får tilgang til kurset i 180 dager fra den dagen du melder deg på. Studiebelastning: 5 uketimer som tilsvarer 140 årstimer Finansiering: NooA Videregående er godkjent for lån i Lånekassen. Støtte er avhengig av at studenten selv har rett til støtte. Læremidler som inngår i kursprisen: Matematikk for NooA Videregående: Nettsider med oppgaver: NooA 2022 Læremidler som ikke inngår i kursprisen: I dette kurset trenger man ikke andre læremidler enn dem som inngår i kursprisen. Målgruppe: Kurset er utviklet for deg som vil ha generell studiekompetanse, eller ønsker å gå opp til eksamen på nytt for å få en bedre karakter. Krav til forkunnskaper: Ingen spesielle. Eksamen: Du må selv melde deg opp til privatisteksamen. [-]
Les mer
Oslo 3 dager 21 000 kr
27 Oct
27 Oct
ITIL® Specialist - Drive Stakeholder Value [+]
ITIL® Specialist - Drive Stakeholder Value [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 2 timer 1 990 kr
PowerPoint webinar for deg som skal lage eller endre organisasjonens PowerPoint-maler. Profesjonelt utformede maler er et viktig utgangspunkt for å lage profesjonelle pr.... [+]
Instruktørbasert opplæring:   PowerPoint nivå 4 - Utvikling av maler Lysbildemal Generelt om maloppsettet Flere lysbildemaler i samme presentasjon Definere temafarger Bytte lysbildemal i en presentasjon Gjøre maler tilgjengelig for "alle" Lysbildeoppsett Tilpasse eksisterende oppsett Lage egendefinerte lysbildeoppsett Kontrollere rekkefølgen på plassholdere   3 gode grunner til å delta 1. Få forståelse av hvordan malen fungerer 2. Lær hvordan temafarger styrer utseende 3. Se hvordan du kan tilpasse lysbildeoppsett, og hvordan lage egne [-]
Les mer
1 uke 4 249 kr
Vil du forbedre franskkunnskapene dine mens du nyter sommersolen? Våre intensive franske sommerkurs er skreddersydd for alle nivåer – fra helt nybegynnere (A1) til avanse... [+]
Sommerkurs i Fransk: Et sommerkurs i fransk er en unik mulighet til å fordype seg i språket og den franskspråklige kulturen – spesielt i løpet av de inspirerende og lyse sommermånedene. Hos NLS Norwegian Language School tilbyr vi sommerkurs både i Oslo og som fleksible nettbaserte programmer. Kursene er tilpasset alle nivåer – fra nybegynnere (A1) til avanserte deltakere (C2) – og passer perfekt for studenter, yrkesaktive og språkinteresserte reisende. Kursstruktur Språkundervisning Kjernen i sommerkursene er intensiv språkundervisning med fokus på de fire grunnleggende ferdighetene: muntlig produksjon, lytting, lesing og skriving. Våre erfarne og engasjerte lærere benytter varierte og interaktive metoder, inkludert: Dialogbaserte undervisningsøkter Samtaletrening og uttaleøvelser Grammatikkoppgaver og ordforrådsbygging Gruppeaktiviteter og rollespill Undervisningen er praktisk, inspirerende og tilpasset deltakernes behov, med mål om å styrke selvtillit og språklig trygghet. Kulturell fordypning Forståelse av språk og kultur går hånd i hånd. Selv om hovedfokuset ligger på språkopplæring, legger vi stor vekt på å formidle innsikt i fransk og frankofon kultur. Gjennom klasseromsdiskusjoner og aktiviteter med kulturelt innhold vil deltakerne utforske: Tradisjoner og høytider Litteratur, kunst og film Sosiale normer og verdier i fransktalende samfunn Selv om det ikke er planlagt organiserte utflukter, gir kurset rikelig med kulturelt innhold som forankrer språklæringen i virkelige sammenhenger. Lokasjon og fleksibilitet Du kan velge det kurset som passer deg best: Undervisning i Oslo: Fysisk oppmøte i våre moderne og sentrale lokaler i hovedstaden. Oslo byr på kulturelle impulser, museer og byliv som kan berike læringsopplevelsen. Nettbasert kurs: Et fleksibelt alternativ med samme faglige innhold, for deg som ønsker å lære hjemmefra eller befinner deg utenfor Norge. Varighet og format Kursene tilbys i ulike varigheter – fra én uke til flere uker – og i ulike formater: Intensivundervisning: Daglig undervisning for rask progresjon Deltidskurs: For deg som ønsker en mer fleksibel læringsrytme i kombinasjon med jobb, ferie eller andre aktiviteter Deltakere Sommerkursene våre tiltrekker seg en mangfoldig gruppe deltakere: Studenter som ønsker et faglig forsprang Yrkesaktive som trenger fransk i arbeidssammenheng Språkelystne som vil lære for personlig utvikling eller reise Dette skaper et dynamisk læringsmiljø hvor deltakere lærer av og med hverandre – og bygger internasjonale nettverk. Fordeler med sommerkurs i fransk ✅ Akselerert læring: Intensiv undervisning i et språkrikt miljø gir raskere fremgang og bedre muntlig flyt ✅ Kulturell innsikt: Du får forståelse for samfunn, verdier og uttrykksformer i franskspråklige land ✅ Sosiale forbindelser: Møt mennesker fra ulike bakgrunner og bygg vennskap og nettverk ✅ Unik opplevelse: Sommer i Oslo gir lange lyse dager og en livlig atmosfære – perfekt for læring og inspirasjon ✅ Kursbevis: Etter fullført kurs får du et sertifikat som dokumenterer dine ferdigheter og innsats Oppsummering Et sommerkurs i fransk – enten i Oslo eller online – er en berikende og effektiv måte å styrke dine språkkunnskaper og din kulturelle forståelse på. Enten du er motivert av personlige ambisjoner, akademiske mål eller profesjonelle behov, gir kurset deg verktøyene du trenger for å lykkes – på fransk. [-]
Les mer
Nettkurs 40 timer 7 500 kr
Brannfaglig Fellesorganisasjon tilbyr montører innen passiv brannsikring faglig kompetanseheving. [+]
E-læringskurs - fortløpende påmelding og alltid ledig plass!   Brannfaglig Fellesorganisasjon tilbyr montører innen passiv brannsikring faglig kompetanseheving.   Innholdet i opplæringen av brannsikringsmontører delt inn i: 1) Grunnkurs og 2) Spesialisering. Grunnkurset inneholder 6 obligatoriske moduler som alle må gå gjennom i starten av opplæringsløpet. Fagopplæringen er modulbasert, hvor hver modul omhandler ett eller flere tema som naturlig hører sammen. 1.1 Introduksjon1.2 Brannteori1.3 Bygg1.4 Forskrifter1.5 Tekniske Fag1.6 Materialer og modulerHver av modulene avsluttes med en oppgave. Undervisningen og de avsluttende oppgavene etter hver modul danner grunnlaget for en avsluttende prøve med spørsmål fra alle 6 moduler. Etter gjennomført og bestått grunnkurs får deltaker tilsendt et kursbevis. Bestått prøve i grunnkurset gir grunnlag for oppstart av opplæring i valgfrie moduler i spesialiseringen. Omfanget av de syv modulene i spesialiseringen er større enn de obligatoriske i grunnkurset. Det legges opp til en sertifisering innen hver enkelt modul i spesialiseringen. I spesialiseringen vil det utstedes sertifikat for hver enkelt modul. Det forutsetter at kandidaten har bestått eksaminering som gjennomføres i samarbeid med NEMKO.   Teknisk arrangør: Quality Norway AS [-]
Les mer
Virtuelt klasserom 6 timer
Modeling [+]
Modeling a job is an important task during planning and performing the operation. This course will give you an introduction to the Cerberus simulation. Understanding output from modeling as the importance of correct input and the effect of different parameter will be covered during the course. Practical example will be used to illustrate.   Introduction to simulationUse of simulation - Understand output from modelingJob planningRe-simulation during jobJob examples and challengesPractical exercises and discussion [-]
Les mer