Indre Østfold
Du har valgt: Tomter
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Tomter )
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Nettkurs 18 måneder 4 890 kr
I Matematikk R2 lærer du om integralregning, rekker, vektorer og trigonometri. Matematikk R2 er for deg som trenger realfagmatematikk for videre studier. [+]
I Matematikk R2 lærer du om integralregning, rekker, vektorer og trigonometri. Matematikk R2 er for deg som trenger realfagmatematikk for videre studier eller for å forbedre karakteren din. Faget er obligatorisk om du skal studere til ingeniør eller arkitekt. Matematikk R2 gir 1 realfagpoeng. Du må ha matematikk R1 for å ta dette faget. Gjennomføring NettstudierDu bestemmer hvor og når du vil lære. Her får du varierte leksjoner i form av tekster, video, quiz, podcast, veiledning og oppgaver. Du har alltid kontakt med din personlige lærer hos K2. Målet er å gjøre deg best mulig forberedt til eksamen. Eksamen Eksamen i Matematikk R2 er skriftlig. Som privatist må du selv melde deg opp til eksamen. Oppmeldingsfristene er normalt 15. september og 1. februar. Husk at betaling av eksamensavgiften skjer ved oppmelding. Veien videre Om du har generell studiekompetanse (GENS) og velger å ta fagene fysikk 1 og matematikk R1 og R2 som privatist, da oppfyller du opptakskravene til flere studier, inkludert ingeniørstudier. Se praktisk info for frister og opptak til universitet og høyskole. Gratis veiledning Er du usikker på hva som skal til for å få studiekompetanse, ta gjerne kontakt med oss for gratis veiledning. Vi har veiledere med mange års erfaring som står klare til å hjelpe deg!Ønsker du mer informasjon om kurset velg "Send meg info"-knappen under. Vil du chatte med oss, så klikk på ikonet nederst i høyre hjørne. Gratis veiledning Vi har veiledere med mange års erfaring som står klare til å hjelpe deg! Er du usikker på hva som skal til for å få studiekompetanse, ta gjerne kontakt med oss for gratis veiledning.  Ønsker du mer informasjon om kurset velg "Send meg info"-knappen under. Vil du chatte med oss, klikk på ikonet nederst i høyre hjørne. Lånekassestøtte Utdanningen er godkjent i lånekassen. Du søker direkte via lanekassen.no. Alt du må vite om lån og stipend fra Lånekassen som deltaker hos K2 utdanning Støtteordning Er du organisert i en fagforening, kan du i de fleste fagforeningene søke støtte til utdanning. Dersom du er organisert bør du sjekke med din fagforening om muligheter for støtte, frister og hvordan du søker. Forkunnskaper Du må ha fullført grunnskole eller tilsvarende opplæring. Minoritetsspråklige bør ha minimum B1-nivå i norsk muntlig og skriftlig. Dersom du har behov for å lære mere norsk før du starter på utdanning har vi norskkurs på forskjellig nivå (A1-B2). Språkkursene er digitale med personlig oppfølging fra lærer. Se alle norskkurs K2 tilbyr. Krav til utstyr Som deltaker hos K2 må du ha tilgang til pc på eksamen. I tillegg trenger du PC-versjonen av Office eller tilsvarende programmer. Se hva du har tilgang til av nettbaserte ressurser på eksamen. Praktisk info Du finner svar på ofte stilte spørsmål på nettsiden vår under praktisk info.     [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
1 dag 9 500 kr
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Virtuelt klasserom 150 minutter 5 990 kr
04 Sep
Seminaret tar for seg en rekke krevende faser og situasjoner som kan oppstå i forbindelse med styrearbeidet. [+]
Spesialseminar 2: «Generasjonsskifter - utfordringer og løsninger»    Dette spesialseminaret er åpent og kostnadsfritt for alle som er med i styrenettverksgrupper arrangert av Styreforeningen. For andre deltakere som er medlemmer av Styreforeningen koster seminaret kr. 4.990,-.For deltakere som ikke er med i styrenettverksgrupper og som ikke er medlemmer av Styreforeningen er prisen kr. 5.990,-   Seminaret tar for seg en rekke krevende faser og situasjoner som kan oppstå i forbindelse med styrearbeidet. Vi ser blant annet på:   hva undersøkeler som er gjort omkring generasjonsskifteprosesser forteller oss uventet aksjonær bortgang og ulike utfordringer det kan medføre fremtidsfullmakt i forbindelse med aksjeeierskap og aksjeovertakels viktigheten av vedtektsbestemmelser eventuelt aksjonæravtaler ved generasjonsskifter, og utfordringene som kan oppstå dersom situasjonen ikke er hensynttat i formalia styrets rolle i generasjonsskifteprosesser forberedelsene og tilretteleggingen i generasjonsskifteprosesser sjekkliste ved generasjonsskifteprosesser [-]
Les mer
1 time 889 kr
01 Sep
08 Sep
15 Sep
At NLS Norwegian Language School, we offer personalized one-on-one English tutoring for children and teenagers at all levels. Each session is tailored to strengthen your ... [+]
One-on-One English Homework Help – Primary, Lower Secondary, and Upper Secondary School At NLS Norwegian Language School, we offer personalized one-on-one English tutoring for children and teens at all school levels. Each lesson is adapted to your child’s academic needs, learning pace, and goals – helping them develop strong skills and greater confidence in English. Where can your child learn? Your child can receive tutoring at home, in our classrooms in Oslo, or online – whichever is most convenient for your family. What can your child expect? They will receive lessons tailored to their current level and pace of learning. Sessions cover reading, writing, grammar, pronunciation, and speaking, with a strong focus on comprehension and communication. Regardless of the format, your child will benefit from individual attention and support throughout the course. Who is this service for? This tutoring is ideal for students who want to improve their grades, need help understanding the curriculum, or want to feel more confident using English in school. Get started today Contact us to arrange tutoring and help your child succeed in English. [-]
Les mer
1 dag 10 900 kr
Workshop: Workshopfasilitering [+]
Workshop: Workshopfasilitering [-]
Les mer
3 dager 24 500 kr
Check Point Certified Security Expert (CCSE) – R81.20 [+]
Check Point Certified Security Expert (CCSE) – R81.20 [-]
Les mer
Virtuelt klasserom 2 dager 6 900 kr
Har du behov for å håndtere og få oversikt over store informasjonsmengder med mange detaljer – så har du behov for et databaseverktøy! [+]
Kurs beskrivelse Er det vanskelig å skjønne hvordan Access fungerer? Har du databaser med bare 1 tabell og ikke flere som de skal ha? Får du ikke orden på dine data? Må du skrive data inn i tabellen istedenfor gjennom et skjema? Er det vanskelig å få data ut fra databasen din? Blir databasen din lite brukervennlig? Dette er vanlige problemstillinger mange sliter med og som blir borte etter endt kurs! Kurset passer for deg med liten erfaring og som ønsker å lære Access fra grunnen av. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. På kun 2 dager vil du mestre de vanligste arbeidsoppgavene i Access. Du lærer gode rutiner du trenger for å kunne arbeide raskt og effektivt. Du vil kunne lage og strukturere alt fra enkle til mer avanserte databaser og vil føle deg trygg på at det er du som kontrollerer Access og ikke omvendt! Du lærer også hvordan du skal få data ut fra databasen din gjennom spørringer og rapporter. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Access erfaring som de gjerne deler med deg! Meld deg på Access-kurs allerede i dag og sikre deg plass!   Kursinnhold Grunnleggende begreper Introduksjon til databasedesign/datamodellering Planlegging av en ny databaseOrganisering av data i en database Opprette en database   Tabeller Tabellens utformingsvisningTabellens data arkvisning Spørringer/Queries UtvalgsspørringerHandlingsspørringer/ActionqueriesLag tabell-spørringSlettespørring-Føy til-spørringOppdateringsspørringParameterspørringer Skjemaer Opprette skjemaer med skjemaveivisereSkjemavisningUformingsvisning for skjemaerGjennomgang av designverktøyVerktøyboksenFargepalett, fonter, tekstplasseringBundne, ubundne og kalkulerte kontrollerPostkilde og feltliste for et skjemaEn-til-mange-skjema Rapporter Opprette rapporter med RapportveiviserenUtformingsvisning for en rapportGruppering og sortering i rapporter Etiketter Spesialtilpassede etikettmalerEtikettveiviseren   [-]
Les mer
Nettkurs 1 dag 4 500 kr
Fiskevelferdskurs med e-læring [+]
VAL FoU og Sikkerhetssenteret Rørvik AS har utviklet e-læringskurs for havbruksnæringa. Kurset er lovpålagt og dekker kravene i Dyrevelferdsloven §6 og Forskrift om transport av akvakulturdyr, kapittel 4, § 12 med relevans for servicebåtpersonell og gir nødvendig kunnskap om fiskevelferd . Fiskevelferd Laksens naturlige behov og adferd Regelverk Velferdsindikator Stress og stressfaktorer Forebyggende helsearbeid Helseutfordringer og sykdom Hvordan ivareta fiskevelferd under ulike arbeidsoperasjoner? Lus og avlusing Rensefisk Miljø og produksjonssystemer Kurset er utviklet- og holdes av fiskehelsepersonell som jobber i havbruksnæringen.  Kurset gjennomføres minst hvert 5 år for å opprettholde kravene i henhold til gjeldende regelverk. [-]
Les mer
Oslo 2 dager 14 900 kr
19 Nov
19 Nov
https://www.glasspaper.no/kurs/kepnertregoe/ [+]
https://www.glasspaper.no/kurs/kepnertregoe/ [-]
Les mer
2 dager 10 500 kr
NS 8401 Alminnelige kontraktsbestemmelser for prosjekteringsoppdrag og NS 8402 Alminnelige kontraktsbestemmelser for rådgivningsoppdrag honorert etter medgått tid. [+]
I samarbeid med Norges bygg- og eiendomsforening. Medlemsrabatt for medlemmer av NBEF, Tekna, NITO og RIF. På kurset lærer du å forstå og gjennomføre kontaktene bedre, noe som kan gi økt fortjeneste i prosjektene. Dette er nyttig for både kursdeltaker og arbeidsgiver!    Rådgiveroppdrag innenfor bygg- og anleggssektoren er en uensartet gruppe. Rådgiveren kan delta i en tidlig fase av et prosjekt og ha som oppgave å utrede prosjektets rammebetingelser og levedyktighet. Han vil kunne utarbeide de overordnede planer for prosjektet, gjennomføre nærmere utredning av behov, programmere og prosjektere. Rådgiveren vil kunne bli engasjert til å lede hele eller deler av prosjektet og til å kontrollere andres utførelse. Han vil kunne være rådgiver for prosjekteier, byggherre og entreprenører samt være underrådgiver for andre rådgivere. I kurset går vi igjennom: Sentrale problemstillinger som vil ha betydning i samtlige oppdragstyper Valg av kontraktsmodell – totalrådgivning Delte kontrakter eller gruppekontrakt Valg av honorartype – fastpris eller timehonorert oppdrag Budsjett- eller takpris Reglene om betaling og tilbakehold av honorar Inngåelse av kontraktene – direktekontrahering eller etter konkurranse Tolking av kontrakten – hvilket arbeid er en del av oppdraget? Endringsreglene Frister og sanksjoner ved forsinkelse Rådgivningsfeil og erstatningsansvar Forsikringsdekning   Forelesere: Lasse Simonsen Lasse er professor ved Det juridiske fakultet i Oslo.Han ble i sin tid stipendiat i Oslo i 1991, og tok sin doktorgrad i 1997 med avhandlingen «Prekontraktuelt ansvar», hvor blant annet de anbudsrettslige problemstillingene står sentralt. Før Lasse Simonsen begynte på universitetet var han i flere år direktør for juridisk avdeling ved Statens bygge- og eiendomsdirektorat (nå Statsbygg). I denne perioden sto han sentralt under fremforhandlingene og utarbeidelsen av en rekke norske standarder, blant annet NS 3430 og NS 3431. Før tiden i direktoratet praktiserte Lasse Simonsen noen år som advokat, og var dommerfullmektig i to år.   Arne Scott Arne er advokat i Sykehusbygg HF. Han har vært selskapsadvokat i Norconsult, partner i advokatfirmaene Pacta og Kluge, medlem av ledergruppen i utbyggingsprosjektet for Telenors nybygg på Fornebu, leder av juridisk avdeling i Statsbygg og advokatfullmektig i advokatfirma BA-HR. Scott var sentral ved forhandlingene av prosjekterings- og rådgivningsstandardene; NS 8401 og NS 8402, og Norsk bygge- og anleggskontrakt; NS 8405. Scott har bred og omfattende erfaring fra foredragsvirksomhet. [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Kristiansand Strand 3 dager 5 900 kr
08 Sep
27 Oct
24 Nov
Stroppekurs/Løfteredskap. Kurset gir kjennskap til krav, oppbygging, merking, bruk, vedlikehold, daglig kontroll og kasseringsregler for ulikt løfteutstyr til stropping..... [+]
Dette kurset inneholder opplæring i stropping, anhuking og signalgiving og etterbestått kurs får man G11 bevis. Dette kurset er aktuelt for alle som skal koble last på en kran, dirrigere kranfører (signalmann), eller som skal kontrollere løfteredskap før bruk. [-]
Les mer
1 dag 9 500 kr
03 Nov
DP-3007: Train and deploy a machine learning model with Azure Machine Learning [+]
DP-3007: Train and deploy a machine learning model with Azure Machine Learning [-]
Les mer