IT-kurs
Vestfold
Du har valgt: Tønsberg
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Tønsberg ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Oslo 3 dager 20 900 kr
27 Aug
10 Dec
10 Dec
Test-Driven JavaScript - (Hands-on) [+]
Test-Driven JavaScript - (Hands-on) [-]
Les mer
Oslo 3 dager 20 900 kr
17 Sep
17 Sep
17 Dec
Introduction to C# and .NET [+]
Introduction to C# and .NET [-]
Les mer
Nettkurs 365 dager 2 995 kr
Power BI basis - elæringskurs [+]
Power BI basis - elæringskurs [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course teaches developers how to create end-to-end solutions in Microsoft Azure [+]
. Students will learn how to implement Azure compute solutions, create Azure Functions, implement and manage web apps, develop solutions utilizing Azure storage, implement authentication and authorization, and secure their solutions by using KeyVault and Managed Identities. Students will also learn how to connect to and consume Azure services and third-party services, and include event- and message-based models in their solutions. The course also covers monitoring, troubleshooting, and optimizing Azure solutions.   TARGET AUDIENCE Students in this course are interested in Azure development or in passing the Microsoft Azure Developer Associate certification exam.   COURSE CONTENT Module 1: Creating Azure App Service Web Apps Students will learn how to build a web application on the Azure App Service platform. They will learn how the platform functions and how to create, configure, scale, secure, and deploy to the App Service platform. Azure App Service core concepts Creating an Azure App Service Web App Configuring and Monitoring App Service apps Scaling App Service apps Azure App Service staging environments Module 2: Implement Azure functions This module covers creating Functions apps, and how to integrate triggers and inputs/outputs in to the app. Azure Functions overview Developing Azure Functions Implement Durable Functions Module 3: Develop solutions that use blob storage Students will learn how Azure Blob storage works, how to manage data through the hot/cold/archive blob storage lifecycle, and how to use the Azure Blob storage client library to manage data and metadata. Azure Blob storage core concepts Managing the Azure Blob storage lifecycle Working with Azure Blob storage Module 4: Develop solutions that use Cosmos DB storage Students will learn how Cosmos DB is structured and how data consistency is managed. Students will also learn how to create Cosmos DB accounts and create databases, containers, and items by using a mix of the Azure Portal and the .NET SDK. Azure Cosmos DB overview Azure Cosmos DB data structure Working with Azure Cosmos DB resources and data Module 5: Implement IaaS solutions This module instructs students on how to use create VMs and container images to use in their solutions. It covers creating VMs, using ARM templates to automate resource deployment, create and manage Docker images, publishing an image to the Azure Container Registry, and running a container in Azure Container Instances. Provisioning VMs in Azure Create and deploy ARM templates Create container images for solutions Publish a container image to Azure Container Registry Create and run container images in Azure Container Instances Module 6: Implement user authentication and authorization Students will learn how to leverage the Microsoft Identity Platform v2.0 to manage authentication and access to resources. Students will also learn how to use the Microsoft Authentication Library and Microsoft Graph to authenticate a user and retrieve information stored in Azure, and how and when to use Shared Access Signatures. Microsoft Identity Platform v2.0 Authentication using the Microsoft Authentication Library Using Microsoft Graph Authorizing data operations in Azure Storage Module 7: Implement secure cloud solutions This module covers how to secure the information (keys, secrets, certificates) an application uses to access resources. It also covers securing application configuration information. Manage keys, secrets, and certificates by using the KeyVault API Implement Managed Identities for Azure resources Secure app configuration data by using Azure App Configuration Module 8: Implement API Management Students will learn how to publish APIs, create policies to manage information shared through the API, and to manage access to their APIs by using the Azure API Management service. API Management overview Defining policies for APIs Securing your APIs Module 9: Develop App Service Logic Apps This module teaches students how to use Azure Logic Apps to schedule, automate, and orchestrate tasks, business processes, workflows, and services across enterprises or organizations. Azure Logic Apps overview Creating custom connectors for Logic Apps Module 10: Develop event-based solutions Students will learn how to build applications with event-based architectures. Implement solutions that use Azure Event Grid Implement solutions that use Azure Event Hubs Implement solutions that use Azure Notification Hubs Module 11: Develop message-based solutions Students will learn how to build applications with message-based architectures. Implement solutions that use Azure Service Bus Implement solutions that use Azure Queue Storage queues Module 12: Monitor and optimize Azure solutions This module teaches students how to instrument their code for telemetry and how to analyze and troubleshoot their apps. Overview of monitoring in Azure Instrument an app for monitoring Analyzing and troubleshooting apps Implement code that handles transient faults Module 13: Integrate caching and content delivery within solutions Students will learn how to use different caching services to improve the performance of their apps. Develop for Azure Cache for Redis Develop for storage on CDNs [-]
Les mer
Oslo 1 dag 9 900 kr
12 Sep
12 Sep
21 Nov
ITIL® 4 Practitioner: Monitoring and Event Management [+]
ITIL® 4 Practitioner: Monitoring and Event Management [-]
Les mer
Oslo 2 dager 16 900 kr
11 Sep
11 Sep
11 Dec
UX Foundation [+]
UX Foundation [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo Bergen 3 dager 27 900 kr
24 Sep
24 Sep
26 Nov
Architecting on AWS [+]
Architecting on AWS [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu er en komplett PDF-løsning, som lar deg opprette og redigere PDF-dokumenter og tegninger. Videre kan du markere opp og gjøre mengdeuttak fra tegningene, sam... [+]
På dette online-kurset vil du lære: Publisering, redigering, kommentering og markering Sikkerhet, digitale stempler og digital signatur Opprette og lagre symboler og tilpassede markeringsverktøy i Tool Chest Skybasert samarbeid og deling av dokumenter i Bluebeam Studio eXtreme-funksjoner (OCR – Tekstfjerning - Skjema-opprettelse - Batch Link) Noen eXtreme-funksjoner blir vist/nevnt i kurset [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Deltakerne lærer å håndtere lister på en rask og effektiv måte og vi ser også på noen av fordelene ved å gjøre en liste om til en tabell og når en ikke bør gjøre det. Ved... [+]
Kursinnhold Flash Fill Diagrammer Sparkline grafikk Hurtiganalyse Sortering og filtrering Avansert filter Delsammendrag Tabeller Målgruppe Deg som Jobber med lister i Excel Ønsker å effektivisere databehandlingen i Excel Vil ha en kjapp gjennomgang av disse elementene. Har grunnleggende kunnskaper i Excel og ønsker å lære mer. Forkunnskaper Har laget regneark Har kunnskaper tilsvarende «Ta kontroll over regnearket» Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Oslo 5 dager 27 900 kr
03 Nov
03 Nov
ISO 27032 Lead Cybersecurity Manager [+]
ISO 27032 Lead Cybersecurity Manager [-]
Les mer
Oslo 2 dager 20 900 kr
09 Oct
09 Oct
React Advanced (Hands-on) [+]
React Advanced (Hands-on) [-]
Les mer