Alle kategorier
Du har valgt: Hordaland
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Hordaland )
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Nettkurs 18 måneder 33 530 kr
Ta studiekompetanse - nettstudier 6 fag fra videregående skole hos K2 Utdanning (privatist). Oppnå studiekompetanse med 23/5 regelen. [+]
6-fagpakken gir deg generell studiekompetanse (23/5-regelen) og du kan studere på høgskole eller universitet. Kurspakken passer for deg som ønsker generell studiekompetanse eller vil forbedre karakterene dine fra videregående skole. Du kan ta hele 6-fagpakken eller enkeltstående fag.  6-fagpakken inneholder fagene Norsk, Engelsk, Matematikk 1P og 2P, Naturfag, Samfunnskunnskap og Historie. Gjennomføring NettstudierDu bestemmer hvor og når du vil lære. Her får du varierte leksjoner i form av tekster, video, quiz, podcast, veiledning og oppgaver. Du har alltid kontakt med din personlige lærer hos K2. Målet er å gjøre deg best mulig forberedt til eksamen. Her kan du prøve alle kursene (gratis) Din digitale læringsplattform Den nettbaserte læringsportalen til K2 er tilpasset både mobil, nettbrett og pc. Det gir deg enkelt tilgang til å studere faget på en engasjerende og spennende måte, uansett hvor du er.  Eksamen Som deltaker ved K2 er du privatist og må ta eksamen i fagene for å få karakter. Oppmeldingsfristene er normalt 15. september og 1. februar. Husk at betaling av eksamensavgiften skjer ved oppmelding.  Norsk muntlig og skriftlig, eksamen nov/des eller mai/juni Engelsk, eksamen nov/des eller mai/juni Matematikk 1P og Matematikk 2P, eksamen nov/des eller mai/juni Naturfag, eksamen nov/des eller mai/juni Samfunnskunnskap, eksamen nov/des eller mai/juni Historie, eksamen nov/des eller mai/juni Veien videre Med generell studiekompetanse (23/5-regelen og de 6 fagene du kan ta hos oss) eller vitnemål fra studieforberedende program (4 fagene) kan du søke opptakt til høgskoler og universitet. Se praktisk info for frister og opptak til universitet og høyskole. Gratis veiledning Vi har veiledere med mange års erfaring som står klare til å hjelpe deg! Er du usikker på hva som skal til for å få studiekompetanse, ta gjerne kontakt med oss for gratis veiledning.  Ønsker du mer informasjon om kurset, velg "Send meg info"-knappen under. Vil du chatte med oss, klikk på ikonet nederst i høyre hjørne. Lånekassestøtte Utdanningen er godkjent i lånekassen. Du søker direkte via lanekassen.no. Alt du må vite om lån og stipend fra Lånekassen som deltaker hos K2 utdanning Støtteordning Er du organisert i en fagforening, kan du i de fleste fagforeningene søke støtte til utdanning. Dersom du er organisert bør du sjekke med din fagforening om muligheter for støtte, frister og hvordan du søker. Forkunnskaper Du må ha fullført grunnskole eller tilsvarende opplæring. Minoritetsspråklige bør ha minimum B1-nivå i norsk muntlig og skriftlig. Dersom du har behov for å lære mere norsk før du starter på utdanning har vi norskkurs på forskjellig nivå (A1-B2). Språkkursene er digitale med personlig oppfølging fra lærer. Se alle norskkurs K2 tilbyr. Krav til utstyr Som deltaker hos K2 må du ha tilgang til pc på eksamen. I tillegg trenger du PC-versjonen av Office eller tilsvarende programmer. Se hva du har tilgang til av nettbaserte ressurser på eksamen. Praktisk info Du finner svar på ofte stilte spørsmål på nettsiden vår under praktisk info.     [-]
Les mer
Nettkurs 4 500 kr
Nettkurs eller brevkurs kombinert med forelesninger i form av lyd og bilde på din egen PC. [+]
Kurset passer for assistenter i barnehage/skole/sfo, barne- og ungdomsarbeidere, omsorgsarbeidere, andre yrkesutøvere og foreldre. Kurset skal gi deltakerne en faglig forståelse av problematferd og gjøre deltakerne i stand til å sette i verk mest mulig effektive tiltak.Nettkurs eller brevkurs kombinert med forelesninger i form av lyd og bilde på din egen PC.     Start:             Når du selv ønsker. Omfang:         3 innleveringer Pris:               kr.4.500,- (kan deles i 4 månedlige avdrag med                        kr. 200,- i avdragsgebyr for hvert avdrag).   Tidsplan • Kurset kan tas etter egen tidsplan med innlevering av besvarelser til veiledning. • Du velger selv når du vil starte opp med kurset og du bestemmer selv hvor lang tid du vil bruke.   Innleveringer • Innlevering av 3 besvarelser   Mål for kurset Kurset skal gi deltakerne en faglig forståelse av problematferd og gjøre deltakerne i stand til å sette i verk mest mulig effektive tiltak.   Kursdeltakerne skal få kunnskap om: • Problematferd med omfang av problemet og hvordan slik atferd kan forstås • Kompetanseutviklende og problemløsende arbeid • Hvordan stimulere sosial læring til det beste for den enkelte?   Tema • Problematferd • Utvikling av atferdsproblemer • Perspektiver på endring • Undervisningsstrategier • Psykodynamisk tilnærming • Psykopedagogisk tilnærming • Involveringspedagogikk • Atferdsmodifikasjon • Strukturering av læringsmiljøet • Forebygging • Hvordan oppstår problematferd? • Atferdskorrigering • Aggressive og utagerende barn • Sosial kompetanse hos barn og unge • Læringspsykologi og sosial kompetanse • Mestringskompetanse • Hva påvirker kompetanseutviklingen? • Sosial læring  • Læring av sosial kompetanse • Tiltak for å fremme sosial kompetanse       Litteratur Sosial kompetanse og problematferd i skolen. Terje Ogden m fl. ISBN 9788205391765 Gyldendal Norsk Forlag 2009   Vurdering  Bestått/ikke bestått.   Kursbevis  Kursbevis utstedes til de som har bestått og som har betalt kursavgiften i sin helhet.   Er du organisert? Undersøk med ditt fagforbund om du kan søke å få dekket kursavgift. [-]
Les mer
Nettkurs 10 000 kr
Nettkurs uten samlinger med nettforelesninger. [+]
Kurset passer for: deg som skal bli: apotektekniker – helsesekretær - tannhelsesekretær deg som har helse- og sosialfag vg1 eller grunnkurs samt fellesfagene/allmennfagene fra vg1 og vg2/grunnkurs og vk-1. Kursets innhold er: Felles programfag: Helsefremmende arbeid • Kommunikasjon og samhandling • Yrkesutøvelse

Nettkurs kombinert med forelesninger i form av lyd og bilde på din egen PC. Felles programfag: Helsefremmende arbeid • Kommunikasjon og samhandling • Yrkesutøvelse

Nettkurs kombinert med forelesninger i form av lyd og bilde på din egen PC. Start:          Når du selv ønskerOmfang:      En innlevering for hvert fag – i alt 3Pris:            Felles programfag: Kr. 10.000,- ekskl. lærebøker og eksamensavgift                    (kan deles i 4 månedlige avdrag med kr. 200,- i avdragsgebyr pr. avdragTidsplan Kurset kan tas etter egen tidsplan med innlevering av mapper til retting. Du velger selv når du vil starte opp med kurset og hvor lang tid du vil bruke. Innleveringer En innlevering for hvert fag – i alt 3. Kurset er i tråd med læreplanens kompetansemål. Det følger med ulike nettressurser som du kan benytte så mye og så ofte du vil.Lånekassen  Utdanningen er godkjent for lån og stipend i Lånekassen. For å få lån omgjort til stipend kreves det at deltaker avlegger privatisteksamen i samtlige fag som utgjør 4 eksamener.Eksamensform  Privatisteksamen etter gjeldende regler. Oppmelding elektronisk: www.privatistweb.no Fører frem til fagbrev. Er du organisert? Undersøk med ditt fagforbund om du kan søke å få dekket kursavgift. Er du organisert? Undersøk med ditt fagforbund om du kan søke å få dekket kursavgift. [-]
Les mer
Nettkurs 4 500 kr
Nettkurs eller brevkurs kombinert med forelesninger i form av lyd og bilde på din egen PC. [+]
Vårt lederkurs gir deg grunnleggende kunnskaper om motiverende ledelse. Kurset skal gi deltakerne en faglig forståelse for ulike utfordringer knyttet til ledelse der mellommenneskelige relasjoner inngår. Nettkurs eller brevkurs kombinert med forelesninger i form av lyd og bilde på din egen PC.     Start:         Når du selv ønsker. Omfang:     3 innleveringer Pris:           kr. 4.500,- (kan deles i 4 månedlige avdrag med                    kr. 200,- i avdragsgebyr for hvert avdrag).    Tidsplan • Kurset kan tas etter egen tidsplan med innlevering av besvarelser til veiledning. • Du velger selv når du vil starte opp med lederkurset og hvor lang tid du vil      bruke.   Innleveringer • Innlevering av 3 besvarelser   Målgruppe for vårt lederkurs Alle som har et verv eller arbeid, eller ønsker et verv eller arbeid der mellommenneskelige relasjoner og ledelse inngår.   Mål for lederkurset Kurset skal gi deltakerne en faglig forståelse for ulike utfordringer knyttet til lederverv og ledelse.   Kursbeskrivelse Vårt lederkurs gir deg grunnleggende kunnskaper om ledelse.   Tema - Lederkurs • Ledelse i dag • Dagens utfordringer • Dagens muligheter • Ledelsesteori • Administrasjon • Organisasjon • Lederkompetanse • Hvor læres denne kompetansen? • Ledertyper • Personlighet • Kommunikasjon • Hva er god kommunikasjon? • Hvilke utfordringer møter vi i kommunikasjon? • Relasjonskompetanse • Makt • Tillit • Motivasjon • Kreativitet • Behov • Gruppe • Team • Utvikling • Vi-følelse • Helhetlig tenking   Litteratur Relasjonell ledelse Hans Morten Skivik ISBN 9788205329669 Gyldendal 2004   Vurdering  Bestått/ikke bestått.   Kursbevis  Kursbevis utstedes til de som har bestått og som har betalt kursavgiften i sin helhet.   Er du organisert? Undersøk med ditt fagforbund om du kan søke å få dekket kursavgiften for vårt lederkurs.   Dersom du ønsker å komme i kontakt med studieekspert kan du trygt ta kontakt med oss på telefon: 913 58 038913 58 038 eller sende oss E-post til: postmottak@kompetansesenter-bedriftshjelp.com Vi har lang erfaring med kurs og studier og vet hva som vil passe deg best etter en kort og uforpliktende samtale. [-]
Les mer
Nettkurs 18 måneder 14 370 kr
Realfag passer for deg som trenger å forbedre karakteren i faget, eller som trenger fordypning for videre studier på høgskole eller universitet. [+]
Ingeniørpakken gir til sammen 2 realfagspoeng og passer for deg som vil bli ingeniør, men som mangler fag eller må forbedre fagene. Har du studiekompetanse, men mangler realfag for å kunne søke ingeniørstudier? Fagene du trenger, er matematikk R1 og R2 og fysikk 1. Her kan du prøve Matematikk eller Fysikk (gratis). Gjennomføring NettstudierDu bestemmer hva, hvor og når du vil lære. Her får du varierte leksjoner i form av tekster, video, quiz, podcast, veiledning og oppgaver. Du har alltid kontakt med din personlige lærer hos K2. Målet er å gjøre deg best mulig forberedt til eksamen. Her kan du prøve alle kursene (gratis). Din digitale læringsplattform Den nettbaserte læringsportalen til K2 er tilpasset både mobil, nettbrett og pc. Det gir deg enkelt tilgang til å studere faget på en engasjerende og spennende måte, uansett hvor du er.  Eksamen Som deltaker ved K2 er du privatist og må ta eksamen i fagene for å få karakter. Oppmeldingsfristene er normalt 15. september og 1. februar. Husk at betaling av eksamensavgiften skjer ved oppmelding.  Velg Ingeniørpakken og få tilgang til Fysikk 1, Matematikk R1 og Matematikk R2 i 12 måneder. Du velger selv når du vil ta eksamen.  Fysikk 1, eksamen nov/des eller mai/juni Matematikk R1, eksamen nov/des eller mai/juni Matematikk R2, eksamen nov/des eller mai/juni Veien videre Om du har generell studiekompetanse (GENS) og velger å ta fagene fysikk 1 og matematikk R1 og R2 som privatist, da oppfyller du opptakskravene til flere studier, inkludert ingeniørstudier. Se praktisk info for frister og opptak til universitet og høyskole. Gratis veiledning Vi har veiledere med mange års erfaring som står klare til å hjelpe deg! Er du usikker på hva som skal til for å få studiekompetanse, ta gjerne kontakt med oss for gratis veiledning.  Ønsker du mer informasjon om kurset, velg "Send meg info"-knappen under. Vil du chatte med oss, klikk på ikonet nederst i høyre hjørne. Lånekassestøtte Utdanningen er godkjent i lånekassen. Du søker direkte via lanekassen.no. Alt du må vite om lån og stipend fra Lånekassen som deltaker hos K2 utdanning Støtteordning Er du organisert i en fagforening, kan du i de fleste fagforeningene søke støtte til utdanning. Dersom du er organisert bør du sjekke med din fagforening om muligheter for støtte, frister og hvordan du søker. Forkunnskaper Du må ha fullført grunnskole eller tilsvarende opplæring. Minoritetsspråklige bør ha minimum B1-nivå i norsk muntlig og skriftlig. Dersom du har behov for å lære mere norsk før du starter på utdanning har vi norskkurs på forskjellig nivå (A1-B2). Språkkursene er digitale med personlig oppfølging fra lærer. Se alle norskkurs K2 tilbyr. Krav til utstyr Som deltaker hos K2 må du ha tilgang til pc på eksamen. I tillegg trenger du PC-versjonen av Office eller tilsvarende programmer. Se hva du har tilgang til av nettbaserte ressurser på eksamen. Praktisk info Du finner svar på ofte stilte spørsmål på nettsiden vår under praktisk info.     [-]
Les mer
Bedriftsintern 3 dager 13 500 kr
The SQL Master Class for Java Developers training is aimed to level up your SQL skills with techniques such as Window Functions, recursive queries, Pivoting, JSON process... [+]
Throughout four years of teaching my High-Performance Java Persistence course, I came to realize that there is so much Java developers can learn about the latest SQL features introduced by Oracle, SQL Server, PostgreSQL, or MySQL.This training spans over the course of 2 days and covers the Top 4 relational database systems: Oracle, SQL Server, PostgreSQL, and MySQL.From execution plans to the best way to paginate data, this training explains lesser-known techniques such as LATERAL JOIN, CROSS APPLY, as well as Derived Tables, Common Table Expressions, recursive queries, and the amazing Window Functions, PIVOT, or UPSERT statements.Last but not least, we are going to learn that, not only modern databases support JSON column types, but you can combine JSON structures with the traditional relational ones, therefore getting the best of both worlds.All examples are inspired by real-life scenarios, and they come in a GitHub repository for which attendees have exclusive and unlimited time access.At the end of these two days of training, the attendees will be better prepared to solve various data-intensive tasks using all these awesome SQL features that have been over the past 20 years.Agenda  Day 1Introduction - 1h 30m    - Beyond SQL:92    - SQL Parsing    - SQL Operation Order    - TOP-N queries    - OFFSET pagination    - Keyset PaginationSubqueries - 1h 15m    - EXISTS and NOT EXISTS    - IN and NOT IN    - ANY and ALL    - INSERT with subqueries    - Aggregation with subqueries   Joins - 1h 15m    - CROSS JOIN    - INNER and LEFT/RIGHT OUTER JOIN    - FULL OUTER JOIN    - NATURAL JOIN    - LATERAL JOIN and CROSS APPLYDay 2Window Functions - 1h 30m    - Analytics queries and window frame processing    - ROW_NUMBER, RANK, and DENSE_RANK    - FIRST_VALUE, LAST_VALUE, LEAD and LAG    - CUME_DIST and PERCENT_RANK    - PERCENTILE_DISC and PERCENTILE_CONTDerived Tables, CTE, Hierarchical Queries - 1h 30m    - Derived Tables    - CTE (Common Table Expressions)    - Recursive CTE    - Hierarchical queries   PIVOT, UNPIVOT, FILTER, and CASE - 1h    - CASE Expressions    - PostgreSQL FILTER Expressions    - PIVOT    - UNPIVOTDay 3UPSERT and MERGE - 30m- MERGE statements- UPSERT statements   JSON processing - 1h 30m    - Schemaless data structures and JSON    - JSON queries    - EAV Model   Transactions and Concurrency Control - 2h    - ACID, 2PL, MVCC    - Isolation Levels and anomalies    - Pessimistic and optimistic locking    - SKIP_LOCKED, NOWAIT [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 27 500 kr
15 Sep
15 Sep
27 Oct
AZ-400: Designing and Implementing Microsoft DevOps solutions [+]
AZ-400: Designing and Implementing Microsoft DevOps solutions [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
1 dag
Kurset er beregnet for el kontrollører som er sertifisert eller skal sertifisere seg i normsamlingen. [+]
NEK405 (eks. NEK405-2 elkontroll bolig eller NEK405-3 elkontroll næring). Kurset kan også være nyttig for montører, saksbehandlere, installatører, og kontrollører hos sakkyndig selskap eller DLE. Kursets mål: ·       Du skal kunne skrive en rapport som tilfredsstiller kravene i NEK405-3 elkontroll næring. ·       Du skal bli litt sikrere på hva som er et elektroavvik, og hvordan avvik kan hjemles. Innehold: ·       Hvordan skrive en rapport, som «tilfredsstiller» kravet i NEK405-3 elkontroll næring. ·       Hva er mandatet for kontrollen. ·       Hvordan sette referansenivå for kontrollen. ·       Hva sier FEL §1 Formål, og § 12 Dokumentasjon. ·       Vi går gjennom noen av sikkerhetskravene i FEL, og diskuterer det vi ser på bl.a. bilder. Er dette avvik eller ikke. ·       Hvordan hjemler vi et avvik. [-]
Les mer
Nettkurs 14 900 kr
elæring PRINCE2 7 Foundation [+]
elæring PRINCE2 7 Foundation [-]
Les mer
1 dag 3 400 kr
Gjennom sikkerhetsforskriften stiller forsikringsselskapene krav til sertifikat for utførelse av varme arbeider. [+]
Varme Arbeider kurs Forkunnskap: Ingen. Kursstart: kl. 08:00 til ca. 14:30 Pris: Kr. 3400,-Det er ikke MVA på kurs. Inkludert: Læremateriell Kursbevis E-sertifikat 5 år varighet Slukkeøvelse brann Kaffe og varm lunsj Målsetning: Å bevisstgjøre deltakerne i forhold til faremomenter i forbindelse med varme arbeider og å sette deltakerne i stand til å iverksette hensiktsmessige tiltak for å begrense skadene ved et eventuelt uhell. Instruktørene som gjennomfører kurset er sertifisert av Norsk Brannvernforening. Fra 01.01.2015 avvikles resertifiseringskurs i ordningen "Brannvern ved utførelse av varme arbeider". NB! Nytt kurs i Varme Arbeider 7,5 timer må gjennomføres hvert 5 år.   "De fleste branner starter i det små. I løpet av minutter eller sekunder kan et lite branntilløp utvikle seg til en brann som skader verdier for hundretusener eller millioner av kroner, og i verste fall koste liv og helse."   [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
In this course, application developers learn how to design, develop, and deploy applications that seamlessly integrate components from the Google Cloud ecosystem. [+]
Through a combination of presentations, demos, and hands-on labs, participants learn how to use GCP services and pre-trained machine learning APIs to build secure, scalable, and intelligent cloud-native applications. Objectives This course teaches participants the following skills: Use best practices for application development Choose the appropriate data storage option for application data Implement federated identity management Develop loosely coupled application components or microservices Integrate application components and data sources Debug, trace, and monitor applications Perform repeatable deployments with containers and deployment services Choose the appropriate application runtime environment; use Google Container Engine as a runtime environment and later switch to a no-ops solution with Google App Engine Flex All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Best Practices for Application Development -Code and environment management-Design and development of secure, scalable, reliable, loosely coupled application components and microservices-Continuous integration and delivery-Re-architecting applications for the cloud Module 2: Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK -How to set up and use Google Cloud Client Libraries, Google Cloud SDK, and Google Firebase SDK-Lab: Set up Google Client Libraries, Google Cloud SDK, and Firebase SDK on a Linux instance and set up application credentials Module 3: Overview of Data Storage Options -Overview of options to store application data-Use cases for Google Cloud Storage, Google Cloud Datastore, Cloud Bigtable, Google Cloud SQL, and Cloud Spanner Module 4: Best Practices for Using Cloud Datastore -Best practices related to the following:-Queries-Built-in and composite indexes-Inserting and deleting data (batch operations)-Transactions-Error handling-Bulk-loading data into Cloud Datastore by using Google Cloud Dataflow-Lab: Store application data in Cloud Datastore Module 5: Performing Operations on Buckets and Objects -Operations that can be performed on buckets and objects-Consistency model-Error handling Module 6: Best Practices for Using Cloud Storage -Naming buckets for static websites and other uses-Naming objects (from an access distribution perspective)-Performance considerations-Setting up and debugging a CORS configuration on a bucket-Lab: Store files in Cloud Storage Module 7: Handling Authentication and Authorization -Cloud Identity and Access Management (IAM) roles and service accounts-User authentication by using Firebase Authentication-User authentication and authorization by using Cloud Identity-Aware Proxy-Lab: Authenticate users by using Firebase Authentication Module 8: Using Google Cloud Pub/Sub to Integrate Components of Your Application -Topics, publishers, and subscribers-Pull and push subscriptions-Use cases for Cloud Pub/Sub-Lab: Develop a backend service to process messages in a message queue Module 9: Adding Intelligence to Your Application -Overview of pre-trained machine learning APIs such as Cloud Vision API and Cloud Natural Language Processing API Module 10: Using Cloud Functions for Event-Driven Processing -Key concepts such as triggers, background functions, HTTP functions-Use cases-Developing and deploying functions-Logging, error reporting, and monitoring Module 11: Managing APIs with Google Cloud Endpoints -Open API deployment configuration-Lab: Deploy an API for your application Module 12: Deploying an Application by Using Google Cloud Build, Google Cloud Container Registry, and Google Cloud Deployment Manager -Creating and storing container images-Repeatable deployments with deployment configuration and templates-Lab: Use Deployment Manager to deploy a web application into Google App Engine flexible environment test and production environments Module 13: Execution Environments for Your Application -Considerations for choosing an execution environment for your application or service:-Google Compute Engine-Kubernetes Engine-App Engine flexible environment-Cloud Functions-Cloud Dataflow-Lab: Deploying your application on App Engine flexible environment Module 14: Debugging, Monitoring, and Tuning Performance by Using Google Stackdriver -Stackdriver Debugger-Stackdriver Error Reporting-Lab: Debugging an application error by using Stackdriver Debugger and Error Reporting-Stackdriver Logging-Key concepts related to Stackdriver Trace and Stackdriver Monitoring.-Lab: Use Stackdriver Monitoring and Stackdriver Trace to trace a request across services, observe, and optimize performance [-]
Les mer
1 dag
Kurset er en generell gjennomgang av Forskrift om maskiner (FOM), med noen tilhørende normer. [+]
En «rød tråd» gjennom kurset blir risikovurdering. Hva er Forskrift om maskiner (FOM), og hvordan «virker» den. Viste du at det elektriske anlegget for ventilasjonsanlegget, kjøleanlegget, pumpestasjonen osv. er en del av maskinen? Hvem har ansvaret for at maskinen er sikker? Kan vi (oppdragsgiver, elektriker, osv.) bli ansvarlig maskin bygger uten selv å være klar over det? Hva gjelder når vi går inn på en eksisterende maskin og gjør endringer? Hva er kravet til dokumentasjon for en maskin? Formål Håndhevende myndigheter Direktiver, Forskrifter (FEL-FEU-FOM) og normer. Kvalifikasjoner, hvem kan gjøre hva. Virkeområde, hva er en maskin Hvem forskriften retter seg mot Ansvar og rollefordeling Risikovurdering (FOM vedlegg 1, NEK EN 60204-1, NS-EN ISO 12100), er et krav, skal dokumenteres. En generell gjennomgang med gode eksempler. Krav til dokumentasjon FOM §8. Samsvarserklæring type IIA og IIB, hva er forskjellen. Forskrift om utførelse av arbeid, gjelder når maskinen er satt i drift, hvem har ansvaret. Grensesnitt elektrisk installasjon – maskin Liten gjennomgang av NEK EN 60204-1 Maskin sikkerhet - Maskiners elektriske utrustning (Maskinens «NEK400»). [-]
Les mer
Nettkurs 4 200 kr
Fortellervinkler er et skrivekurs for deg som søker glede og inspirasjon i skriveprosessen. Det er ett av fem forfatterkurs på Forfatterskolen. [+]
Fortellervinkler Forfatterskolen Fortellervinkler er et skrivekurs for deg som søker glede og inspirasjon i skriveprosessen. Det er ett av fem forfatterkurs som inngår i vårt samarbeid med Forfatterskole.dk. Læremidler: Alle læremidlene er på nettet og inngår i kursprisen. Målgruppe: Kurset er utviklet for deg som ønsker å forbedre dine språk- og skriveferdigheter. Krav til forkunnskaper: Kurset bygger på Skrivekurs I Karakterer og kursbevis: Innsendingene og kurset karaktersettes med Bestått eller Må kompletteres. Når alle innsendingene er bestått, vil du automatisk få tilgang til et kursbevis på nettet. Kursbeskrivelse: Dette kurset har syv kapitler, eller studieenheter, som du kan fullføre i ditt eget tempo, når det passer deg. Du kan starte når du vil og får tilgang til kurset i 180 dager. Hvert kapittel består av noe teori, en tankedelingsoppgave og en innsendingsoppgave. Innsendingsoppgavene besvarer du i et eget dokument som skal lastes opp via kurssidene. Læreren din vil gi deg tilbakemelding og gode råd om besvarelsene. Om du ønsker det, kan du ta del i vårt læringsfellesskap ved å svare på tankedelingsoppgavene og være åpen for dialog med de andre kursdeltakerne. Sammen med dette kurset har du også tilgang til NooAs Writers´ Lounge der du kan dele dine arbeider, kommentarer og spørsmål med deltakere i de andre skrivekursene. Det første kapittelet fokuserer på historiefortellinger. Temaet for innsendingsoppgaven er en dag i ditt liv (hverdag eller fest) som du har lyst til å fortelle om. Kapittel to introduserer en olympiske forteller. I innsendingsoppgaven skal du skrive en personlig historie i tredje person entall. Kapittel tre belyser forskjellene mellom den eksplisitte og den implisitte forteller. Innsendingsoppgaven tar for seg nærkontakt av tredje grad. I kapittel fire fortsetter kurset med å fokusere på forskjellene mellom den eksplisitte og den implisitte forteller. Innsendingsoppgaven er hentet fra et fengselsmiljø. Kapittel fem handler om den indre og den ytre synsvinkel og i innsendingsoppgaven skal du beskrive en UFO-historie på en objektiv måte. Det sjette kapittelet tar for seg den subjektive fortellervinklingen, og i innsendingsoppgaven skal du ta for deg tanker rundt en fødsel. Det siste kapittelet tar for seg den panoramiske og den sceniske fortellerstilen, og i innsendingsoppgaven skal du ta for deg en persons minner fra sin første sykkel. [-]
Les mer