IT-kurs
IT kompetanse
Du har valgt: Hordaland
Nullstill
Filter
Ferdig

-

24 treff ( i Hordaland ) i IT kompetanse
 

Nettstudier 1 semester 4 980 kr
På forespørsel
Utviklingsprosesser. Modellering. UML. Verktøy. Objektorientert analyse Objektorientert design. Bruk av arkitektoniske stiler og design mønstre. Implementasjon og test. [+]
Studieår: 2013-2014   Gjennomføring: Høst Antall studiepoeng: 5.0 Forutsetninger: Erfaring fra et objektorientert programmeringsspråk, kjennskap til prosjektarbeid Innleveringer: Innleverte øvinger. Det blir gitt 10 øvinger, 8 må være godkjent for å kunne gå opp til eksamen. Personlig veileder: ja Vurderingsform: 4 timer skriftlig eksamen. Ansvarlig: Tore Berg Hansen Eksamensdato: 12.12.13         Læremål: Forventet læringsutbytte:Etter å ha gjennomført emnet Objektorientert systemutvikling skal studenten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan definere, gjenkjenne og forklare de grunnleggende konsepter for utvikling av store programvaresystemer basert på det objektorienterte paradigme- argumentere for betydningen av å følge en prosessmodell- argumentere for fordelene med smidige prosesser- argumentere for modellbasert utvikling- beskrive modellene som brukes i objektorientert systemutvikling og hvordan de henger sammen- forklare begrepene arkitektoniske stiler og designmønstre FERDIGHETER:Kandidaten:- kan demonstrere den systematiske gangen fra krav, via arkitektonisk og detaljert design, til ferdig kodet og implementert system GENERELL KOMPETANSE:Kandidaten:- er klar over at utvikling av store programvaresystemer er ingeniørarbeid- er seg bevisst at utvikling av komplekse programvaresystemer krever koordinert innsats av et velfungerende team som følger en definert, smidig prosess- er opptatt av tett kontakt med alle interessenter for å oppnå et godt resultat Innhold:Utviklingsprosesser. Modellering. UML. Verktøy. Objektorientert analyse Objektorientert design. Bruk av arkitektoniske stiler og design mønstre. Implementasjon og test.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Dette faget går: Høst 2013    Fag Objektorientert systemutvikling 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 4 dager 24 500 kr
This course teaches Solutions Architects how to translate business requirements into secure, scalable, and reliable solutions. Lessons include design considerations relat... [+]
Recommend solutions to minimize costs Recommend a solution for Conditional Access, including multi-factor authentication Recommend a solution for a hybrid identity including Azure AD Connect and Azure AD Connect Recommend a solution for using Azure Policy Recommend a solution that includes KeyVault Recommend a solution that includes Azure AD Managed Identities Recommend a storage access solution Design and Azure Site Recovery solution Recommend a solution for autoscaling Recommend a solution for containers Recommend a solution for network security Recommend a solution for migrating applications and VMs Recommend a solution for migration of databases  Agenda Module 1: Design for Cost Optimization -Recommend Solutions for Cost Management-Recommended Viewpoints for Minimizing Costs Module 2: Design a Solution for Logging and Monitoring -Azure Monitoring Services-Azure Monitor Module 3: Design Authentication -Recommend a Solution for Multi-Factor Authentication-Recommend a Solution for Single-Sign On (SSO)-Five Steps for Securing Identity Infrastructure-Recommend a Solution for a Hybrid Identity-Recommend a Solution for B2B Integration Module 4: Design Authorization -Infrastructure Protection-Recommend a Hierarchical Structure for Management Groups, Subscriptions and Resource Groups Module 5: Design Governance -Recommend a Solution for using Azure Policy-Recommend a Solution for using Azure Blueprint Module 6: Design Security for Applications -Recommend a Solution using KeyVault-Recommend a Solution using Azure AD Managed Identities Module 7: Design a Solution for Databases Select an Appropriate Data Platform Based on RequirementsOverview of Azure Data StorageRecommend Database Service Tier SizingDynamically Scale Azure SQL Database and Azure SQL Managed InstancesRecommend a Solution for Encrypting Data at Rest, Transmission, and In Use Module 8: Design Data Integration -Recommend a Data Flow-Recommend a Solution for Data Integration Module 9: Select an Appropriate Storage Account -Understanding Storage Tiers-Recommend a Storage Access Solution-Recommend Storage Management Tools Module 10: Design a Solution for Backup and Recovery -Recommend a Recovery Solution for Hybrid and On-Premises Workloads-Design and Azure Site Recovery Solution-Recommend a Solution for Recovery in Different Regions-Recommend a Solution for Azure Backup Management-Design a Solution for Data Archiving and Retention Module 11: Design for High Availability -Recommend a Solution for Application and Workload Redundancy-Recommend a Solution for Autoscaling-Identify Resources that Require High Availability-Identify Storage Tpes for High Availability-Recommend a Solution for Geo-Redundancy of Workloads Module 12: Design a Compute Solution -Recommend a Solution for Compute Provisioning-Determine Appropriate Compute Technologies-Recommend a Solution for Containers-Recommend a Solution for Automating Compute Management Module 13: Design a Network Solution -Recommend a Solution for Network Addressing and Name Resolution-Recommend a Solution for Network Provisioning-Recommend a Solution for Network Security-Recommend a Solution for iInternete Connectivity and On-Premises Networks,-Recommend a Solution for Automating Network Management-Recommend a Solution for Load Balancing and Rraffic Routing Module 14: Design an Application Architecture -Recommend a Microservices Architecture-Recommend an Orchestration Solution for Deployment of Applications-Recommend a Solution for API Integration Module 15: Design Migrations -Assess and On-Premises Servers and Applications for Migration-Recommend a Solution for Migrating Applications and VMs-Recommend a Solution for Migration of Databases [-]
Les mer
Virtuelt klasserom 4 dager 24 500 kr
This course teaches IT Professionals how to manage their Azure subscriptions, secure identities, administer the infrastructure, configure virtual networking, connect Azur... [+]
Prerequisites Successful Azure Administrators start this role with experience on operating systems, virtualization, cloud infrastructure, storage structures, and networking. Understanding of on-premises virtualization technologies, including: VMs, virtual networking, and virtual hard disks. Understanding of network configuration, including TCP/IP, Domain Name System (DNS), virtual private networks (VPNs), firewalls, and encryption technologies. Understanding of Active Directory concepts, including domains, forests, domain controllers, replication, Kerberos protocol, and Lightweight Directory Access Protocol (LDAP). Understanding of resilience and disaster recovery, including backup and restore operations. Agenda Module 1: Identity -Azure Active Directory-Users and Groups Module 2: Governance and Compliance -Subscriptions and Accounts-Azure Policy-Role-based Access Control (RBAC) Module 3: Azure Administration -Azure Resource Manager-Azure Portal and Cloud Shell-Azure PowerShell and CLI-ARM Templates Module 4: Virtual Networking -Virtual Networks-IP Addressing-Network Security groups-Azure Firewall-Azure DNS Module 5: Intersite Connectivity -VNet Peering-VPN Gateway Connections-ExpressRoute and Virtual WAN Module 6: Network Traffic Management -Network Routing and Endpoints-Azure Load Balancer-Azure Application Gateway-Traffic Manager Module 7: Azure Storage -Storage Accounts-Blob Storage-Storage Security-Azure Files and File Sync-Managing Storage Module 8: Azure Virtual Machines -Virtual Machine Planning-Creating Virtual Machines-Virtual Machine Availability-Virtual Machine Extensions Module 9: Serverless Computing -Azure App Service Plans-Azure App Service-Container Services-Azure Kubernetes Service Module 10: Data Protection -File and Folder Backups-Virtual Machine Backup Module 11: Monitoring -Azure Monitor-Azure Alerts-Log Analytics-Network Watcher [-]
Les mer
1 dag 6 200 kr
Data genereres i stadig større mengder - av mennesker, av sensorer og av innebygde dataenheter. Mottak, behandling og analyse av store datamengder krever distribuerte tek... [+]
Data genereres i stadig større mengder - av mennesker, av sensorer og av innebygde dataenheter. Mottak, behandling og analyse av store datamengder krever distribuerte teknologier og lagringsformater. Big Data er blitt et fellesbegrep på disse teknologiene og dataene de behandler. Det er i dag forretningskritisk innenfor flere og flere bransjer å kunne håndtere Big Data. Men hvor skal man begynne? Kursinnhold Hvordan defineres Big Data? Hvilke problemstillinger kan løses med Big Data Hvilke Big Data teknologier finnes og hvilke bør vi satse på? Hva er hovedutfordringene med å ta i bruk Big Data? Kurset gjennomføres som en serie foredrag med rom for spørsmål og utdypninger innen hvert emne. De mest brukte teknologiene innen Big Data lagring, datahåndtering og analyse blir gjennomgått og vurdert, inkludert Hadoop, Spark, Hive, HBase, Cassandra, Kafka, MongoDB og en rekke andre. [-]
Les mer
Virtuelt klasserom 3 timer
Skriv kursbeskrivelse her [+]
Skriv kursbeskrivelse her [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course teaches developers how to create end-to-end solutions in Microsoft Azure. Students will learn how to implement Azure compute solutions, create Azure Functions... [+]
Agenda Module 1: Creating Azure App Service Web Apps -Azure App Service core concepts-Creating an Azure App Service Web App-Configuring and Monitoring App Service apps-Scaling App Service apps-Azure App Service staging environments Module 2: Implement Azure functions -Azure Functions overview-Developing Azure Functions-Implement Durable Functions Module 3: Develop solutions that use blob storage -Azure Blob storage core concepts-Managing the Azure Blob storage lifecycle-Working with Azure Blob storage Module 4: Develop solutions that use Cosmos DB storage -Azure Cosmos DB overview-Azure Cosmos DB data structure-Working with Azure Cosmos DB resources and data Module 5: Implement IaaS solutions -Provisioning VMs in Azure-Create and deploy ARM templates-Create container images for solutions-Publish a container image to Azure Container Registry-Create and run container images in Azure Container Instances Module 6: Implement user authentication and authorization -Microsoft Identity Platform v2.0-Authentication using the Microsoft Authentication Library-Using Microsoft Graph-Authorizing data operations in Azure Storage Module 7: Implement secure cloud solutions -Manage keys, secrets, and certificates by using the KeyVault API-Implement Managed Identities for Azure resources-Secure app configuration data by using Azure App Configuration Module 8: Implement API Management -API Management overview-Defining policies for APIs-Securing your APIs Module 9: Develop App Service Logic Apps -Azure Logic Apps overview-Creating custom connectors for Logic Apps Module 10: Develop event-based solutions -Implement solutions that use Azure Event Grid-Implement solutions that use Azure Event Hubs-Implement solutions that use Azure Notification Hubs Module 11: Develop message-based solutions -Implement solutions that use Azure Service Bus-Implement solutions that use Azure Queue Storage queues Module 12: Monitor and optimize Azure solutions -Overview of monitoring in Azure-Instrument an app for monitoring-Analyzing and troubleshooting apps-Implement code that handles transient faults Module 13: Integrate caching and content delivery within solutions -Develop for Azure Cache for Redis-Develop for storage on CDNs [-]
Les mer
Bedriftsintern 1 dag 7 500 kr
Data science og maskinlæring er blitt en viktig drivkraft bak mange forretnings beslutninger. Men fortsatt er mange usikre på hva begrepene innebærer og hvilke muligheter... [+]
Dette kurset tilbys som bedriftsinternt kurs   Maskinlæring handler om sette datamaskiner i stand til å lære fra og utvikle atferd basert på data. Det vil si at en datamaskin kan løse en oppgave den ikke er eksplisitt programmert for å håndtere. I stedet er den i stand til å automatisk lære gjenkjenning av komplekse mønstre i data og gjøre beslutninger basert på dette disse. Maskinlæring gir store muligheter, men mange bedrifter har problemer med å ta teknologien i bruk. Nøyaktig hvilke oppgaver kan maskinlæring utføre, og hvordan kommer man i gang? Dette kurset gir oversikt over mulighetene som ligger i maskinlæring, og hvordan i tillegg til kunnskap om hvordan teknologien kan løse oppgaver og skape resultater i praksis. Hva er maskinlæring, datavitenskap og kunstig intelligens og hvordan det er relatert til statistikk og dataanalyse? Hvordan å utvinne kunnskap fra dataene dine? Hva betyr Big data og hvordan analyseres det? Hvor og hvordan skal du bruke maskinlæring til dine daglige forretningsproblemer? Hvordan bruke datamønstre til å ta avgjørelser og spådommer med eksempler fra den virkelige verden? Hvilke typer forretningsproblemer kan en maskinen lære å håndtere Muligheter som maskinlæring gir din bedrift Hva er de teoretiske aspekter på metoder innen maskinlæring? Hvilke ML-metoder som er relevante for ulike problemstillinger innen dataanalyse? Hvordan evaluere styrker og svakheter mellom disse algoritmene og velge den beste? Anvendt data science og konkrete kunde eksempler i praksis   Målsetning Kurset gir kunnskap om hvordan maskinlæring kan løse et bestemt problem og hvilke metoder som egner seg i en gitt situasjon. Du blir i stand til å kan skaffe deg innsikt i data, og vil kunne identifisere egenskapene som representerer dem best. Du kjenner de viktigste maskinlæringsalgoritmene og hvilke metoder som evaluerer ytelsen deres best. Dette gir grunnlag for kontinuerlig forbedring av løsninger basert på maskinlæring.   [-]
Les mer
Oslo Bergen Og 1 annet sted 2 dager 15 900 kr
21 Sep
21 Sep
16 Nov
Modern Service Oriented Architecture [+]
Modern Service Oriented Architecture [-]
Les mer
Virtuelt klasserom 2 dager 14 000 kr
In this course, the students will design various data platform technologies into solutions that are in line with business and technical requirements. This can include on-... [+]
The students will also explore how to design data security including data access, data policies and standards. They will also design Azure data solutions which includes the optimization, availability and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Data Platform Architecture Considerations. -Core Principles of Creating Architectures-Design with Security in Mind-Performance and Scalability-Design for availability and recoverability-Design for efficiency and operations-Case Study Module 2: Azure Batch Processing Reference Architectures. -Lambda architectures from a Batch Mode Perspective-Design an Enterprise BI solution in Azure-Automate enterprise BI solutions in Azure-Architect an Enterprise-grade Conversational Bot in Azure Module 3: Azure Real-Time Reference Architectures. -Lambda architectures for a Real-Time Perspective-Lambda architectures for a Real-Time Perspective-Design a stream processing pipeline with Azure Databricks-Create an Azure IoT reference architecture Module 4: Data Platform Security Design Considerations. -Defense in Depth Security Approach-Network Level Protection-Identity Protection-Encryption Usage-Advanced Threat Protection Module 5: Designing for Resiliency and Scale. -Design Backup and Restore strategies-Optimize Network Performance-Design for Optimized Storage and Database Performance-Design for Optimized Storage and Database Performance-Incorporate Disaster Recovery into Architectures-Design Backup and Restore strategies Module 6: Design for Efficiency and Operations. -Maximizing the Efficiency of your Cloud Environment-Use Monitoring and Analytics to Gain Operational Insights-Use Automation to Reduce Effort and Error [-]
Les mer
Oslo 5 dager 30 000 kr
19 Jun
25 Sep
25 Sep
https://www.glasspaper.no/kurs/dp-203-data-engineering-on-microsoft-azure/ [+]
DP-203: Data Engineering on Microsoft Azure [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
In this course, the students will implement various data platform technologies into solutions that are in line with business and technical requirements including on-premi... [+]
The students will also explore how to implement data security including authentication, authorization, data policies and standards. They will also define and implement data solution monitoring for both the data storage and data processing activities. Finally, they will manage and troubleshoot Azure data solutions which includes the optimization and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Azure for the Data Engineer -Explain the evolving world of data-Survey the services in the Azure Data Platform-Identify the tasks that are performed by a Data Engineer-Describe the use cases for the cloud in a Case Study Module 2: Working with Data Storage. -Choose a data storage approach in Azure-Create an Azure Storage Account-Explain Azure Data Lake storage-Upload data into Azure Data Lake Module 3: Enabling Team Based Data Science with Azure Databricks. -Explain Azure Databricks and Machine Learning Platforms-Describe the Team Data Science Process-Provision Azure Databricks and workspaces-Perform data preparation tasks Module 4: Building Globally Distributed Databases with Cosmos DB. -Create an Azure Cosmos DB database built to scale-Insert and query data in your Azure Cosmos DB database-Provision a .NET Core app for Cosmos DB in Visual Studio Code-Distribute your data globally with Azure Cosmos DB Module 5: Working with Relational Data Stores in the Cloud. -SQL Database and SQL Data Warehouse-Provision an Azure SQL database to store data-Provision and load data into Azure SQL Data Warehouse Module 6: Performing Real-Time Analytics with Stream Analytics. Module 7: Orchestrating Data Movement with Azure Data Factory. -Explain how Azure Data Factory works-Create Linked Services and datasets-Create pipelines and activities-Azure Data Factory pipeline execution and triggers Module 8: Securing Azure Data Platforms. -Configuring Network Security-Configuring Authentication-Configuring Authorization-Auditing Security Module 9: Monitoring and Troubleshooting Data Storage and Processing. -Data Engineering troubleshooting approach-Azure Monitoring Capabilities-Troubleshoot common data issues-Troubleshoot common data processing issues Module 10: Integrating and Optimizing Data Platforms. -Integrating data platforms-Optimizing data stores-Optimize streaming data-Manage disaster recovery [-]
Les mer
Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Virtuelt klasserom 3 dager 23 650 kr
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual Course The course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams , you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture  This 3-day course is aimed at anyone wishing to attain the ISTQB Advanced Test Automation Engineer qualification. This qualification builds upon the Foundation syllabus and provides essential skills for all those involved in test automation and who want to develop further their expertise in one or more specific areas. Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt A Test Automation Engineer is one who has broad knowledge of testing in general, and an in-depth understanding in the special area of test automation. An in-depth understanding is defined as having sufficient knowledge of test automation theory and practice to be able to influence the direction that an organization and/or project takes when designing, developing and maintaining test automation solutions for functional tests. The modules offered at the Advanced Level Specialist cover a wide range of testing topics.   The course is highly practical addressing the following areas: Introduction and objectives for Test Automation This section provides an introduction to test automation explaining the objectives, advantages, disadvantages and limitations of test automation as well as technical success factors of a test automation project. Preparing for Test Automation Understanding the type of system is vital for determining the most appropriate automation solution and also how we can design systems and testing for more effective automation. This section also looks at how we can evaluate for the most appropriate tools. The generic Test Automation architecture A test automation engineer has the role of designing, developing, implementing, and maintaining test automation solutions. As each solution is developed, similar tasks need to be done, similar questions need to be answered, and similar issues need to be addressed and prioritized. These reoccurring concepts, steps, and approaches in automating testing become the basis of the generic test automation architecture, and this will be discussed in detail during this section Deployment risks and contingencies This section looks at the various risks associated with the deployment of test tools and how to avoid test automation failure. Test Automation reporting and metrics Providing information to stakeholders for them to make informed decisions about the quality of the software is a vital part of testing and this section looks at the various metrics that can be used to monitor test automation and what information should be supplied to the stakeholder and how it should be presented. Transitioning manual testing to an automated environment This section looks at the various criteria to apply to determine the suitability for automation and understanding the factors for transitioning from manual to automation testing Verifying the Test Automation solution To have justified confidence in the information we supply to the stakeholders regarding test automation we must have justified confidence in the test environment and test automation solution supporting the information Continuous improvement This section looks ahead and how we can improve the automation solution making it more effective and efficient The Exam The ISTQB Advanced Test Automation Engineer exam is a 1 hour 30 minute, 40 question multiple-choice exam totaling 75 points. The pass mark is 65% (49 out of 75). It is a pre-requisite that attendees hold the ISTQB Foundation Level certificate. [-]
Les mer
Oslo 5 dager 35 000 kr
12 Jun
12 Jun
09 Oct
CEH: Certified Ethical Hacker v12 [+]
CEH: Certified Ethical Hacker v12 [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
12 Jun
28 Jun
17 Jul
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer