IT-kurs
Du har valgt: Aksdal
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Aksdal ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
2 dager 15 000 kr
This 2-day course is identical to the 1-day M-AZ-900T01 course.  However this course lasts two days because of the hands-on parts. This course will prepare students for t... [+]
  COURSE OVERVIEW This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional first step in learning about cloud services and Microsoft Azure, before taking further Microsoft Azure or Microsoft cloud services courses. The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available with Azure.   COURSE CONTENT  Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure     This course helps to prepare for exam AZ-900. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og ... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Studenten bør kunne installere linux, og kjenne til enkle linuxkommandoer som f.eks. «ls». Nybegynnere uten erfaring med linux anbefales å starte med emnet Praktisk Linux, som gir disse forkunnskapene. Innleveringer: Øvinger: 8 av 12 må være godkjent. Vurderingsform: Skriftlig eksamen 3t (60%) og mappe (40%), der alle øvinger er med i mappevurderingen. Ansvarlig: Helge Hafting Eksamensdato: 18.12.13 / 27.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten:- kan legge planer for en ny tjenermaskin- kan forklare bruk av ulike filsystemer, kvoter og aksesskontrollister FERDIGHETER:Kandidaten:- kan installere linux og vanlig tjenerprogramvare- kan vedlikeholde oppsettet på en tjenermaskin, som regel ved å tilpasse konfigurasjonsfiler- kan lete opp informasjon på nettet, for å løse drifts- og installasjonsproblemer GENERELL KOMPETANSE:Kandidaten:- kan vurdere linuxprogramvare for å dekke en organisasjons behov for tjenester Innhold:Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og automasjon.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Linux systemdrift 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Oslo 4 dager 23 900 kr
30 Sep
30 Sep
16 Dec
Vue.js, Vuex & Router Course [+]
Vue.js, Vuex & Router Course [-]
Les mer
Virtuelt eller personlig 2 timer 2 450 kr
Hypotesetesting avgjør om datasett har signifikant forskjellig snitt eller variasjon for å bestemme rotårsaker, årsakssammenhenger eller effekt av endringer. [+]
Kurs i hypotesetesting I forbedringsarbeid og problemløsning tester vi hypoteser for å bestemme rotårsaker og årsakssammenhenger. Dette kurset lærer deg å utforme og teste hypoteser. Du får svar på spørsmål som: Er det signifikante forskjeller i gjennomsnitt eller variasjon? Har endringen vi har gjort medført en signifikant forbedring?   Kurset er for deg som vil: utforme hypotese basert på egne teorier om rotårsak eller årsakssammenhenger bestemme om datasett har signifikante forskjelliger i gjennomsnitt eller variasjon avgjøre om forbedringsarbeid har gitt signifikante forskjeller forstå årsakssammenhenger ved hjelp av statistikk   Du lærer følgende: Bruk av statistisk hypotesetesting Praktisk og statistisk signifikans Statistikk og sannsynlighet Utforme hypotese Velge Hypotesetest (type data, fordeling, statistikk av interesse, # populasjoner) Trekke konklusjon basert på p-verdi Type I og type II feil Vurdering av datautvalg og prøveantall Bruke av p-verdi Vi bruker praktiske eksempler og øvelser i undervisningen.     Kursholder Kursholder Sissel Pedersen Lundeby er IASSC (International association for Six Sigma certification) akkreditert kursholder (eneste i Norge per januar 2022): "This accreditation publically reflects that you have met the standards established by IASSC such that those who participate in a training program led by you can expect to receive an acceptable level of knowledge transfer consistent with the Lean Six Sigma belt Bodies of Knowledge as established by IASSC."  Hypotesetesting er et av verktøyene som benyttes innen Lean Six Sigma, og Sissel har bred erfaring med anvendelse av dette verktøyet.  Sissel er utdannet sivilingeniør i kjemiteknikk fra NTNU, og har mer enn 20 års erfaring innen produksjon og miljøteknologi. Hennes Lean Six Sigma opplæring startet i 2002, hos et amerikansk firma, hvor hun ble Black Belt sertifisert. I 2017 ble hun også Black Belt sertifisert gjennom IASSC. Sissel har svært god erfaring med å bruke Lean Six Sigma til forbedringer, og fokuserer på å skape målbare resultater. Kursene bruker praktiske, gjenkjennelige eksempler, og formidler Lean Six Sigma på en enkel, forståelig måte.      Tilbakemeldinger "Inspirerende, faglig dyktig, folkeliggjør et teoretisk fagområde" Espen Fjeld, Kommersiell direktør hos Berendsen "Faglig meget dyktig og klar fremføring. Morsom og skaper tillit" Jon Sørensen, Produksjonsleder hos Berendsen "10/10 flink til å nå alle" Erlend Stene, Salgsleder hos Berendsen "Tydelig og bra presentert. God til å kontrollspørre og lytte (sjekke forståelse)" Morten Bodding, Produksjonsleder hos Berendsen "Utgjorde en forskjell, engasjert og dyktig" Kursdeltager fra EWOS "Du er inspirerende, positiv og dyktig i faget" Kursdeltager fra EWOS "Jeg var veldig imponert over Sissels Lean Six Sigma kunnskap. Hun gjør det enkelt å identifisere forbedringer og skape resultater" Daryl Powell, Lean Manager, Kongsberg Maritime Subsea   Praktisk informasjon Kurset arrangeres på forespørsel fra bedrifter. Åpne kurs arrangeres ihht kurskalenderen. Kurset består av et nettmøte på 2 timer. [-]
Les mer
Oslo 1 dag 9 900 kr
22 Sep
22 Sep
01 Dec
ITIL® 4 Practitioner: Change enablement [+]
ITIL® 4 Practitioner: Change Enablement [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Virtuelt klasserom 4 dager 24 000 kr
MS-500 MICROSOFT 365 SECURITY ADMINISTRATOR [+]
COURSE OVERVIEW This course is comprised of the following Microsoft Official Curriculum modules: MS-500T01 Managing Microsoft 365 Identity and Access, MS-500T02 Implementing Microsoft 365 Threat Protection, MS-500T03 Implementing Microsoft 365 Information Protection and MS-500T04 Administering Microsoft 365 Built-in Compliance.   MS-500T01 Managing Microsoft 365 Identity and Access Help protect against credential compromise with identity and access management. In this course you will learn how to secure user access to your organization’s resources. Specifically, this course covers user password protection, multi-factor authentication, how to enable Azure Identity Protection, how to configure Active Directory federation services, how to setup and use Azure AD Connect, and introduces you to Conditional Access. You will also learn about solutions for managing external access to your Microsoft 365 system.   MS500T02 Implementing Microsoft 365 Threat Protection Threat protection helps stop damaging attacks with integrated and automated security. In this course you will learn about threat protection technologies that help protect your Microsoft 365 environment. Specifically, you will learn about threat vectors and Microsoft’s security solutions for them. You will learn about Secure Score, Exchange Online protection, Azure Advanced Threat Protection, Windows Defender Advanced Threat Protection, and how to use Microsoft 365 Threat Intelligence. It also discusses securing mobile devices and applications. The goal of this course is to help you configure your Microsoft 365 deployment to achieve your desired security posture.   MS500T03 Implementing Microsoft 365 Information Protection Information protection is the concept of locating and classifying data anywhere it lives. In this course you will learn about information protection technologies that help secure your Microsoft 365 environment. Specifically, this course discusses information rights managed content, message encryption, as well as labels, policies and rules that support data loss prevention and information protection. Lastly, the course explains the deployment of Microsoft Cloud App Security.   MS500T04 Administering Microsoft 365 Built-in Compliance Internal policies and external requirements for data retention and investigation may be necessary for your organization. In this course you will learn about archiving and retention in Microsoft 365 as well as data governance and how to conduct content searches and investigations. Specifically, this course covers data retention policies and tags, in-place records management for SharePoint, email retention, and how to conduct content searches that support eDiscovery investigations. The course also helps your organization prepare for Global Data Protection Regulation (GDPR).   Virtual Learning   This interactive training can be taken from any location, your office or home and is delivered by a trainer. This training does not have any delegates in the class with the instructor, since all delegates are virtually connected. Virtual delegates do not travel to this course, Global Knowledge will send you all the information needed before the start of the course and you can test the logins. TARGET AUDIENCE This course is for the Microsoft 365 security administrator role. This role collaborates with the Microsoft 365 Enterprise Administrator, business stakeholders and other workload administrators to plan and implement security strategies and ensures that the solutions comply with the policies and regulations of the organization. COURSE CONTENT Module 1: User and Group Security This module explains how to manage user accounts and groups in Microsoft 365. It introduces you to Privileged Identity Management in Azure AD as well as Identity Protection. The module sets the foundation for the remainder of the course.   Module 2: Identity Synchronization This module explains concepts related to synchronizing identities. Specifically, it focuses on Azure AD Connect and managing directory synchronization to ensure the right people are connecting to your Microsoft 365 system.   Module 3: Federated Identities This module is all about Active Directory Federation Services (AD FS). Specifically, you will learn how to plan and manage AD FS to achieve the level of access you want to provide users from other directories.   Module 4: Access Management This module describes Conditional Access for Microsoft 365 and how it can be used to control access to resources in your organization. The module also explains Role Based Access Control (RBAC) and solutions for external access.   Module 5: Security in Microsoft 365 This module starts by explaining the various cyber-attack threats that exist. It then introduces you to the Microsoft solutions to thwart those threats. The module finishes with an explanation of Microsoft Secure Score and how it can be used to evaluate and report your organizations security posture.   Module 6: Advanced Threat Protection This module explains the various threat protection technologies and services available in Microsoft 365. Specifically, the module covers message protection through Exchange Online Protection, Azure Advanced Threat Protection and Windows Defender Advanced Threat Protection.   Module 7: Threat Intelligence This module explains Microsoft Threat Intelligence which provides you with the tools to evaluate and address cyber threats. You will learn how to use the Security Dashboard in the Microsoft 365 Security and Compliance Center. It also explains and configures Microsoft Advanced Threat Analytics.   Module 8: Mobility This module is all about securing mobile devices and applications. You will learn about Mobile Device Management and how it works with Intune. You will also learn about how Intune and Azure AD can be used to secure mobile applications.   Module 9: Information Protection This module explains information rights management in Exchange and SharePoint. It also describes encryption technologies used to secure messages. The module introduces how to implement Azure Information Protection and Windows Information Protection.   Module 10: Data Loss Prevention This module is all about data loss prevention in Microsoft 365. You will learn about how to create policies, edit rules, and customize user notifications.   Module 11: Cloud Application Security This module is all about cloud app security for Microsoft 365. The module will explain cloud discovery, app connectors, policies, and alerts.     [-]
Les mer
Klasserom + nettkurs 4 dager 21 000 kr
This course teaches IT Professionals how to manage core Windows Server workloads and services using on-premises, hybrid, and cloud technologies. [+]
COURSE OVERVIEW The course teaches IT Professionals how to implement and manage on-premises and hybrid solutions such as identity, management, compute, networking, and storage in a Windows Server hybrid environment. TARGET AUDIENCE This four-day course is intended for Windows Server Hybrid Administrators who have experience working with Windows Server and want to extend the capabilities of their on-premises environments by combining on-premises and hybrid technologies. Windows Server Hybrid Administrators implement and manage on-premises and hybrid solutions such as identity, management, compute, networking, and storage in a Windows Server hybrid environment. COURSE OBJECTIVES After you complete this course you will be able to: Use administrative techniques and tools in Windows Server. Identify tools used to implement hybrid solutions, including Windows Admin Center and PowerShell. Implement identity services in Windows Server. Implement identity in hybrid scenarios, including Azure AD DS on Azure IaaS and managed AD DS. Integrate Azure AD DS with Azure AD. Manage network infrastructure services. Deploy Azure VMs running Windows Server, and configure networking and storage. Administer and manage Windows Server IaaS Virtual Machine remotely. Manage and maintain Azure VMs running Windows Server. Configure file servers and storage. Implement File Services in hybrid scenarios, using Azure Files and Azure File Sync. COURSE CONTENT Module 1: Identity services in Windows Server This module introduces identity services and describes Active Directory Domain Services (AD DS) in a Windows Server environment. The module describes how to deploy domain controllers in AD DS, as well as Azure Active Directory (AD) and the benefits of integrating Azure AD with AD DS. The module also covers Group Policy basics and how to configure group policy objects (GPOs) in a domain environment. Lessons for module 1 Introduction to AD DS Manage AD DS domain controllers and FSMO roles Implement Group Policy Objects Manage advanced features of AD DS Lab : Implementing identity services and Group Policy Deploying a new domain controller on Server Core Configuring Group Policy After completing module 1, students will be able to: Describe AD DS in a Windows Server environment. Deploy domain controllers in AD DS. Describe Azure AD and benefits of integrating Azure AD with AD DS. Explain Group Policy basics and configure GPOs in a domain environment. Module 2: Implementing identity in hybrid scenarios This module discusses how to configure an Azure environment so that Windows IaaS workloads requiring Active Directory are supported. The module also covers integration of on-premises Active Directory Domain Services (AD DS) environment into Azure. Finally, the module explains how to extend an existing Active Directory environment into Azure by placing IaaS VMs configured as domain controllers onto a specially configured Azure virtual network (VNet) subnet. Lessons for module 2 Implement hybrid identity with Windows Server Deploy and manage Azure IaaS Active Directory domain controllers in Azure Lab : Implementing integration between AD DS and Azure AD Preparing Azure AD for AD DS integration Preparing on-premises AD DS for Azure AD integration Downloading, installing, and configuring Azure AD Connect Verifying integration between AD DS and Azure AD Implementing Azure AD integration features in AD DS After completing module 2, students will be able to: Integrate on-premises Active Directory Domain Services (AD DS) environment into Azure. Install and configure directory synchronization using Azure AD Connect. Implement and configure Azure AD DS. Implement Seamless Single Sign-on (SSO). Implement and configure Azure AD DS. Install a new AD DS forest on an Azure VNet. Module 3: Windows Server administration This module describes how to implement the principle of least privilege through Privileged Access Workstation (PAW) and Just Enough Administration (JEA). The module also highlights several common Windows Server administration tools, such as Windows Admin Center, Server Manager, and PowerShell. This module also describes the post-installation confguration process and tools available to use for this process, such as sconfig and Desired State Configuration (DSC). Lessons for module 3 Perform Windows Server secure administration Describe Windows Server administration tools Perform post-installation configuration of Windows Server Just Enough Administration in Windows Server Lab : Managing Windows Server Implementing and using remote server administration After completing module 3, students will be able to: Explain least privilege administrative models. Decide when to use privileged access workstations. Select the most appropriate Windows Server administration tool for a given situation. Apply different methods to perform post-installation configuration of Windows Server. Constrain privileged administrative operations by using Just Enough Administration (JEA). Module 4: Facilitating hybrid management This module covers tools that facilitate managing Windows IaaS VMs remotely. The module also covers how to use Azure Arc with on-premises server instances, how to deploy Azure policies with Azure Arc, and how to use role-based access control (RBAC) to restrict access to Log Analytics data. Lessons for module 4 Administer and manage Windows Server IaaS virtual machines remotely Manage hybrid workloads with Azure Arc Lab : Using Windows Admin Center in hybrid scenarios Provisioning Azure VMs running Windows Server Implementing hybrid connectivity by using the Azure Network Adapter Deploying Windows Admin Center gateway in Azure Verifying functionality of the Windows Admin Center gateway in Azure After completing module 4, students will be able to: Select appropriate tools and techniques to manage Windows IaaS VMs remotely. Explain how to onboard on-premises Windows Server instances in Azure Arc. Connect hybrid machines to Azure from the Azure portal. Use Azure Arc to manage devices. Restrict access using RBAC. Module 5: Hyper-V virtualization in Windows Server This modules describes how to implement and configure Hyper-V VMs and containers. The module covers key features of Hyper-V in Windows Server, describes VM settings, and how to configure VMs in Hyper-V. The module also covers security technologies used with virtualization, such as shielded VMs, Host Guardian Service, admin-trusted and TPM-trusted attestation, and Key Protection Service (KPS). Finally, this module covers how to run containers and container workloads, and how to orchestrate container workloads on Windows Server using Kubernetes. Lessons for module 5 Configure and manage Hyper-V Configure and manage Hyper-V virtual machines Secure Hyper-V workloads Run containers on Windows Server Orchestrate containers on Windows Server using Kubernetes Lab : Implementing and configuring virtualization in Windows Server Creating and configuring VMs Installing and configuring containers After completing module 5, students will be able to: Install and configure Hyper-V on Windows Server. Configure and manage Hyper-V virtual machines. Use Host Guardian Service to protect virtual machines. Create and deploy shielded virtual machines. Configure and manage container workloads. Orchestrate container workloads using a Kubernetes cluster. Module 6: Deploying and configuring Azure VMs This module describes Azure compute and storage in relation to Azure VMs, and how to deploy Azure VMs by using the Azure portal, Azure CLI, or templates. The module also explains how to create new VMs from generalized images and use Azure Image Builder templates to create and manage images in Azure. Finally, this module describes how to deploy Desired State Configuration (DSC) extensions, implement those extensions to remediate noncompliant servers, and use custom script extensions. Lessons for module 6 Plan and deploy Windows Server IaaS virtual machines Customize Windows Server IaaS virtual machine images Automate the configuration of Windows Server IaaS virtual machines Lab : Deploying and configuring Windows Server on Azure VMs Authoring Azure Resource Manager (ARM) templates for Azure VM deployment Modifying ARM templates to include VM extension-based configuration Deploying Azure VMs running Windows Server by using ARM templates Configuring administrative access to Azure VMs running Windows Server Configuring Windows Server security in Azure VMs After completing module 6, students will be able to: Create a VM from the Azure portal and from Azure Cloud Shell. Deploy Azure VMs by using templates. Automate the configuration of Windows Server IaaS VMs. Detect and remediate noncompliant servers. Create new VMs from generalized images. Use Azure Image Builder templates to create and manage images in Azure. Module 7: Network infrastructure services in Windows Server This module describes how to implement core network infrastructure services in Windows Server, such as DHCP and DNS. This module also covers how to implement IP address managment and how to use Remote Access Services. Lessons for module 7 Deploy and manage DHCP Implement Windows Server DNS Implement IP address management Implement remote access Lab : Implementing and configuring network infrastructure services in Windows Server Deploying and configuring DHCP Deploying and configuring DNS After completing module 7, students will be able to: Implement automatic IP configuration with DHCP in Windows Server. Deploy and configure name resolution with Windows Server DNS. Implement IPAM to manage an organization’s DHCP and DNS servers, and IP address space. Select, use, and manage remote access components. Implement Web Application Proxy (WAP) as a reverse proxy for internal web applications. Module 8: Implementing hybrid networking infrastructure This module describes how to connect an on-premises environment to Azure and how to configure DNS for Windows Server IaaS virtual machines. The module covers how to choose the appropriate DNS solution for your organization’s needs, and run a DNS server in a Windows Server Azure IaaS VM. Finally, this module covers how to manage manage Microsoft Azure virtual networks (VNets) and IP address configuration for Windows Server infrastructure as a service (IaaS) virtual machines. Lessons for module 8 Implement hybrid network infrastructure Implement DNS for Windows Server IaaS VMs Implement Windows Server IaaS VM IP addressing and routing Lab : Implementing Windows Server IaaS VM networking Implementing virtual network routing in Azure Implementing DNS name resolution in Azure After completing module 8, students will be able to: Implement an Azure virtual private network (VPN). Configure DNS for Windows Server IaaS VMs. Run a DNS server in a Windows Server Azure IaaS VM. Create a route-based VPN gateway using the Azure portal. Implement Azure ExpressRoute. Implement an Azure wide area network (WAN). Manage Microsoft Azure virtual networks (VNets). Manage IP address configuration for Windows Server IaaS virtual machines (VMs). Module 9: File servers and storage management in Windows Server This module covers the core functionality and use cases of file server and storage management technologies in Windows Server. The module discusses how to configure and manage the Windows File Server role, and how to use Storage Spaces and Storage Spaces Direct. This module also covers replication of volumes between servers or clusters using Storage Replica. Lessons for module 9 Manage Windows Server file servers Implement Storage Spaces and Storage Spaces Direct Implement Windows Server Data Deduplication Implement Windows Server iSCSI Implement Windows Server Storage Replica Lab : Implementing storage solutions in Windows Server Implementing Data Deduplication Configuring iSCSI storage Configuring redundant Storage Spaces Implementing Storage Spaces Direct After completing module 9, students will be able to: Configure and manage the Windows Server File Server role. Protect data from drive failures using Storage Spaces. Increase scalability and performance of storage management using Storage Spaces Direct. Optimize disk utilization using Data DeDuplication. Configure high availability for iSCSI. Enable replication of volumes between clusters using Storage Replica. Use Storage Replica to provide resiliency for data hosted on Windows Servers volumes. Module 10: Implementing a hybrid file server infrastructure This module introduces Azure file services and how to configure connectivity to Azure Files. The module also covers how to deploy and implement Azure File Sync to cache Azure file shares on an on-premises Windows Server file server. This module also describes how to manage cloud tiering and how to migrate from DFSR to Azure File Sync. Lessons for module 10 Overview of Azure file services Implementing Azure File Sync Lab : Implementing Azure File Sync Implementing DFS Replication in your on-premises environment Creating and configuring a sync group Replacing DFS Replication with File Sync–based replication Verifying replication and enabling cloud tiering Troubleshooting replication issues After completing module 10, students will be able to: Configure Azure file services. Configure connectivity to Azure file services. Implement Azure File Sync. Deploy Azure File Sync Manage cloud tiering. Migrate from DFSR to Azure File Sync.   [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. [+]
Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform. Learning Objectives This course teaches participants the following skills: Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform Use Cloud SQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform Employ BigQuery and Cloud Datalab to carry out interactive data analysis Train and use a neural network using TensorFlow Employ ML APIs Choose between different data processing products on the Google Cloud Platform Course Outline Module 1: Introducing Google Cloud Platform -Google Platform Fundamentals Overview-Google Cloud Platform Big Data Products Module 2: Compute and Storage Fundamentals -CPUs on demand (Compute Engine)-A global filesystem (Cloud Storage)-CloudShell-Lab: Set up an Ingest-Transform-Publish data processing pipeline Module 3: Data Analytics on the Cloud -Stepping-stones to the cloud-CloudSQL: your SQL database on the cloud-Lab: Importing data into CloudSQL and running queries-Spark on Dataproc-Lab: Machine Learning Recommendations with Spark on Dataproc Module 4: Scaling Data Analysis -Fast random access-Datalab-BigQuery-Lab: Build machine learning dataset Module 5: Machine Learning -Machine Learning with TensorFlow-Lab: Carry out ML with TensorFlow-Pre-built models for common needs-Lab: Employ ML APIs Module 6: Data Processing Architectures -Message-oriented architectures with Pub/Sub-Creating pipelines with Dataflow-Reference architecture for real-time and batch data processing Module 7: Summary -Why GCP?-Where to go from here-Additional Resources [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course teaches Solutions Architects how to translate business requirements into secure, scalable, and reliable solutions. Lessons include virtualization, automation,... [+]
Agenda Module 1: Implement VMs for Windows and Linux -Select Virtual Machine Size-Configure High Availability-Implement Azure Dedicated Hosts-Deploy and Configure Scale Sets-Configure Azure Disk Encryption Module 2: Automate Deployment and Configuration of Resources -Azure Resource Manager Templates-Save a Template for a VM-Evaluate Location of New Resources-Configure a Virtual Hard Disk Template-Deploy from a Template-Create and Execute an Automation Runbook Module 3: Implement Virtual Networking -Virtual Network Peering-Implement VNet Peering Module 4: Implement Load Balancing and Network Security -Implement Azure Load Balancer-Implement an Application Gateway-Understand Web Application Firewall-Implement Azure Firewall-Implement Azure Front Door-Implementing Azure Traffice Manager-Implement Network Security Groups and Application Security Grou-Implement Azure Bastion Module 5: Implement Storage Accounts -Storage Accounts-Blob Storage-Storage Security-Managing Storage-Accessing Blobs and Queues using AAD-Configure Azure Storage Firewalls and Virtual Networks Module 6: Implement Azure Active Directory -Overview of Azure Active Directory-Users and Groups-Domains and Custom Domains-Azure AD Identity Protection-Implement Conditional Access-Configure Fraud Alerts for MFA-Implement Bypass Options-Configure Trusted IPs-Configure Guest Users in Azure AD-Manage Multiple Directori Module 7: Implement and Manage Azure Governance -Create Management Groups, Subscriptions, and Resource Groups-Overview of Role-Based Access Control (RBAC)-Role-Based Access Control (RBAC) Roles-Azure AD Access Reviews-Implement and Configure an Azure Policy-Azure Blueprints Module 8: Implement and Manage Hybrid Identities -Install and Configure Azure AD Connect-Configure Password Sync and Password Writeback-Configure Azure AD Connect Health Module 9: Manage Workloads in Azure -Migrate Workloads using Azure Migrate-VMware - Agentless Migration-VMware - Agent-Based Migration-Implement Azure Backup-Azure to Azure Site Recovery-Implement Azure Update Management Module 10: Implement Cloud Infrastructure Monitoring -Azure Infrastructure Security Monitoring-Azure Monitor-Azure Workbooks-Azure Alerts-Log Analytics-Network Watcher-Azure Service Health-Monitor Azure Costs-Azure Application Insights-Unified Monitoring in Azure Module 11: Manage Security for Applications -Azure Key Vault-Azure Managed Identity Module 12: Implement an Application Infrastructure -Create and Configure Azure App Service-Create an App Service Web App for Containers-Create and Configure an App Service Plan-Configure Networking for an App Service-Create and Manage Deployment Slots-Implement Logic Apps-Implement Azure Functions Module 13: Implement Container-Based Applications -Azure Container Instances-Configure Azure Kubernetes Service Module 14: Implement NoSQL Databases -Configure Storage Account Tables-Select Appropriate CosmosDB APIs Module 15: Implement Azure SQL Databases -Configure Azure SQL Database Settings-Implement Azure SQL Database Managed Instances-High-Availability and Azure SQL Database [-]
Les mer
Nettkurs 12 måneder 9 500 kr
Målet med kurset er å gi deg en forståelse for filosofien bak ITIL®. Kurset gir innføring i basis konseptet, prinsippene, prosessene og funksjonene som er definert som be... [+]
Kurset inneholder 12 timer med undervisning, er delt inn i moduler og er en blanding av video og interaktive øvelse. Du vil få en omfattende introduksjon til kjernekonseptene til ITIL® 4.   Les mer om ITIL® 4 på AXELOS sine websider    The ITIL®  4 Foundation Online course on this page is offered by ILX Group an ATO of AXELOS Limited. ITIL® 4 is a registered trade mark of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved.   Dette inngår i kurset - 12 måneders tilgang til kurset fra kjøpsdato- Support service- En testmodul med spørsmål rettet mot sertifiseringseksamen Sertifiseringseksamen - Eksamens voucher er inklusive i kurset- Det er ingen hjelpemidler tillatt under eksamen- Varighet er 60 minutter, men et tillegg på 15 minutter for de som ikke har engelsk som morsmål- Eksamensformen er multiple choice - 40 spørsmål skal besvares, og du består ved 65% korrekte svar (dvs 26 av 40 spørsmål) Disse modulene inngår i kurset - Introduction and overview- Key concepts of service management- Four dimensions of service management- Service value system- Introduction to practices- Purpose of 11 practices and some definitions- Introduction to seven key practices in detail- Continual improvement- Change control- Incident management- Service request management- Service desk- Service level management- Exam simulator Etter endt kurs vil du - Forstå nøkkelkonseptene for ITIL-Service Management- Forstå hvordan ITIL-veiledende prinsipper kan hjelpe organisasjoner til å ta i bruk og tilpasse ITIL-Service Management- Forstå de fire dimensjonene i ITIL-Service Management- Forstå nøkkelbegrepene for kontinuerlig forbedring [-]
Les mer