IT-kurs
Du har valgt: Brattvåg
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Brattvåg ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to provide accurate and reliable information about the configuration of services and configuration support items when and where it is needed. [+]
Understand the purpose and key concepts of Service Configuration Management, including its role in maintaining accurate and reliable information about configuration items (CIs) within the IT infrastructure. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content Mobile-optimised Practical exercises   Exam: 20 questions Multiple Choice 30 Minutes Closed book Pass Mark: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Virtuelt klasserom 3 dager 18 000 kr
The Python Programming 2 course comprises sessions dealing with advanced object orientation,iterators and generators,comprehensions,decorators,multithreading,functional p... [+]
COURSE OVERVIEW   The delegate will learn how to exploit advanced features of the Python language to build complex and efficient applications. Exercises and examples are used throughout the course to give practical hands-on experience with the techniques covered. TARGET AUDIENCE The Python Programming 2 course is designed for existing Python developers who have a good grounding in the basics and want to exploit some of the advanced features of the language. For the delegate for whom Python is their first programming language,we recommend taking the Python Programming 1 course first,then taking some time to practice the skills gained,before returning to take the Python Programming 2 course.   COURSE OBJECTIVES This course aims to provide the delegate with the knowledge to be able to interpret,write,and troubleshoot complex Python applications exploiting inheritance and polymorphism,mixins,composition and aggregation,iterators,generators,decorators,comprehension,concurrency,functional programming,and RESTful web services. COURSE CONTENT DAY 1 COURSE INTRODUCTION Administration and Course Materials Course Structure and Agenda Delegate and Trainer Introductions SESSION 1: ADVANCED OBJECT ORIENTATION The self Keyword Constructors and Destructors Encapsulation Inheritance Introspection with __dict__,__name__,__module__,__bases__ The hasattr(obj,attr),dir(obj),help(obj) functions Polymorphism Abstract Classes Multiple Inheritance and Mixins Composition and Aggregation Static Members SESSION 2: ITERATORS & GENERATORS Iterables Iterators Custom Iterators Generators Yield vs. Return SESSION 3: COMPREHENSIONS List Comprehension Set Comprehension The zip Function Dictionary Comprehension DAY 2 SESSION 4: DECORATORS Decorators Decorator Functions Decorator Annotations Decorator Use Cases Labs SESSION 5: FUNCTIONAL PROGRAMMING Functional Programming Lambdas Immutability Mapping Filtering Reducing SESSION 6: MULTITHREADING Threads Multithreading Thread Construction Thread Execution Thread Sleep Joins Data Sharing Synchronisation Multithreading vs. Multiprocessing DAY 3 SESSION 7: WEB SERVICES RESTful Web Services JSON Data CRUD and HTTP RESTful Clients RESTful APIs SESSION 8: UNIT TESTING Unit Testing Terminology Test Classes Test Fixtures Test Cases Assertions Test Runners   FOLLOW ON COURSES Data Analysis Python [-]
Les mer
Oslo 5 dager 30 000 kr
22 Sep
22 Sep
17 Nov
Administering Microsoft SQL Server [+]
Administering Microsoft SQL Server [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
5 dager 16 200 kr
kurs for deg som skal jobbe med salg og markedsføring på nett [+]
Digital markedsføring   Dette er kurs for deg som skal jobbe med salg og markedsføring på nett. I løpet av 5 kursdager  vil du få god digital kompetanse, lære hva som er godt innhold og tilrettelegge dette for deling på nett. Du skal lære å engasjere kundene dine, lage godt innhold, optimalisere nettsidene for søk på nett, samt bruke google analytics for analyse av trafikken på nettstedet ditt. Etter kurset skal du være i stand til å planlegge og gjenomføre digital markedsføring, kartlegge og optimalisere underveis, og få relevant økt trafikk og konvertering på dine nettsider. Pris kr. 16200,- kurs er fra kl. 09 - 15. Kurs start 10. mai, digital markedsføring: Digital strategi, 10. mai Sosiale medier og innholdsmarkedsføring, 11. mai Skriv gode tekster og nettsider, 1. juni Google Analytics, 2. juni SEO – Søkemotoroptimalisering, 3. juni       [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Installasjon av tjenermaskin og tilkobling av arbeidsstasjoner med Windows 7/8. Brukeradministrasjon og hvordan sikkerheten i Windows 2008/2012 nettverk settes opp med br... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: God kjennskap til Windows XP/Windows 7/Windows 8 eller god generell kunnskap om andre operativsystemer. Innleveringer: Innleverte øvinger. Det blir gitt 12 øvinger og 8 må være godkjent for å kunne gå opp til eksamen Personlig veileder: ja Vurderingsform: 3-timers individuell skriftlig eksamen Ansvarlig: Jostein Lund Eksamensdato: 05.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet Windows server for systemansvarlige skal studenten ha følgende læringsutbytte: KUNNSKAPER:Kandidaten:- har innsikt i drift av nettverk basert på Windows Server, programvaredistribusjon, virtualisering og overvåking. FERDIGHETER:Kandidaten kan:- installere Windows Server med roller og tjenester- lage/opprette og konfigurere Active Directory- opprette brukere, grupper og tilgangskontroll- benytte Group Policy til utrulling av skrivere og programvare, implementere innloggings-script og sette passordpolicy- opprette og konfigurere lokale og vandrende (roaming) profiler- utvikle, tilpasse og implementere innloggingsscript for brukerne- sette opp og drifte lokale og delte skrivere- rulle ut operativsystemer og applikasjoner- opprette og administrere virtuelle maskiner og nettverk GENERELL KOMPETANSE:Kandidaten har:- perspektiv og kompetanse i å velge riktige og tilpassete driftsløsninger- kompetanse i å formidle driftsterminologi, både muntlig og skriftlig Innhold:Installasjon av tjenermaskin og tilkobling av arbeidsstasjoner med Windows 7/8. Brukeradministrasjon og hvordan sikkerheten i Windows 2008/2012 nettverk settes opp med bruk av Active Directory, DNS, deling, NTFS, grupper, domener og Group Policy. Oppsett av profiler, loginscript for brukere, utskriftmiljøet, distribusjon av OS og programvare, fjerndrifting og virtualisering (server 2008/2012).Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Windows server for systemansvarlige 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 4 timer 24 500 kr
This course teaches Azure Solution Architects how to design infrastructure solutions. Course topics cover governance, compute, application architecture, storage, data int... [+]
The course combines lecture with case studies to demonstrate basic architect design principles. Successful students have experience and knowledge in IT operations, including networking, virtualization, identity, security, business continuity, disaster recovery, data platforms, and governance. Students also have experience designing and architecting solutions. COURSE OBJECTIVES Skills gained Design a governance solution. Design a compute solution. Design an application architecture. COURSE CONTENT Module 1: Design compute and application solutions In this module you will learn about governance, compute, and application architectures. Lessons of Module 1 Design for governance Design for compute solutions Design for application architectures Lab : Case studies of Module 1 After completing this module, students will be able to: Design a governance solution. Design a compute solution. Design an application architecture. Module 2: Design storage solutions In this module, you will learn about non-relational storage, relational storage, and data integration solutions. Lessons of Module 2 Design a non-relational storage solution. Design a relational storage solution. Design a data integration solution. Lab : Case studies of Module 2 After completing this module, students will be able to: Design non-relational storage solutions. Design relational storage solutions. Design a data integration solution. Module 3: Design networking and access solutions In this module you will learn about authentication and authorization, identity and access for applications, and networking solutions. Lessons of Module 3 Design authentication and authorization solutions Design networking solutions Lab : Case studies of Module 3 After completing this module, students will be able to: Design authentication and authorization solutions. Design network solutions. Module 4: Design business continuity solutions Lessons of Module 4 Design for backup and disaster recovery Design monitoring solutions Design for migrations Lab : Case studies of Module 4 After completing this module, students will be able to: Design backup and disaster recovery. Design monitoring solutions. Design for migrations. [-]
Les mer
Nettkurs 3 timer 549 kr
Datavisualisering handler om hvordan man presenterer data på en oversiktlig og profesjonell måte. Det handler om å gi rask og effektiv innsikt i noe som ellers ville vært... [+]
Datavisualisering handler om hvordan man presenterer data på en oversiktlig og profesjonell måte. Det handler om å gi rask og effektiv innsikt i noe som ellers ville vært uoversiktlig og komplisert. Vi mennesker er langt flinkere til å prosessere data som presenteres visuelt enn vi er til å forstå store regneark fulle av tall. I dette kurset, ledet av Espen Faugstad, vil du lære å opprette, tilpasse og perfeksjonere presentasjonen av data i diagramformat ved hjelp av Microsoft Excel. Du vil lære å representere data i forskjellige diagramtyper, inkludert stolpediagram, linjediagram, sektordiagram, hierarkidiagram, statistisk diagram, radardiagram og kombinasjonsdiagram. For å ta dette kurset, kreves grunnleggende forståelse av hvordan Microsoft Excel fungerer. Kurset er strukturert i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Diagramutforming Kapittel 3: Diagramformat Kapittel 4: Diagramtyper Kapittel 5: Annet Kapittel 6: Print Kapittel 7: Avslutning Etter å ha fullført kurset vil du være i stand til å effektivt bruke diagrammer i Excel for å presentere data på en måte som gjør det enkelt for andre å forstå og dra nytte av informasjonen.   Varighet: 2 timer og 44 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer