IT-kurs
Du har valgt: Dokka
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Dokka ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Dagens byggebransje fokuserer på BIM. Autodesk Revit Architecture er det ledende systemet i Norge for arkitekter innen BIM prosjektering. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Revit Architecture Basis I Her er et utvalg av temaene du vil lære på kurset: Introduksjon til BIM Modellering av 3D-bygningsmodell i flere detaljeringsgrader (informasjonsnivåer) Samarbeid med andre fagmodeller Generering av planer, snitt, fasader, detaljer og perspektiver Skjemaer og mengdeuttrekk Oppsetning til print A Anvendelse av relevante NTItools Kurset gir deg innblikk i bruken av BIM-arbeidsmetoder med Revit som hovedverktøy. Det bygges opp en full, parametrisk 3D-modell, hvor de grunnleggende funksjonene i Revit benyttes. DU vil få en bred forståelse av både prinsipper og funksjoner i Revit og skal bli i stand til å øke detaljeringen av prosjektet ytterligere.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
.NET-rammeverket og arkitekturen. Common Language Runtime (CLR). Common Type System (CTS). Klassebiblioteket. Common Language Specification (CLS). Assemblies. Programmeri... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Erfaring med programmering i et objektorientert språk. Innleveringer: Det blir gitt 10 øvinger. 8 må være godkjente for å gå opp til eksamen. Personlig veileder: ja Vurderingsform: individuell skriftlig eksamen, 3 timer. Ansvarlig: Tore Berg Hansen Eksamensdato: 17.12.13 / 20.05.14         Læremål: Etter å ha gjennomført emnet skal kandidaten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten kan forklare:- hva .NET-rammeverket er, dets hensikt og hva det inneholder- begrepene Common Language Runtime, Common Type System og managed code- begrepene Solution, Project og Assembly- hva en webtjeneste er- hvordan datakilder kan aksesseres ved hjelp av ADO.NET- hvordan webapplikasjoner kan lages ved hjelp av ASP.NET FERDIGHETER:Kandidaten:- kan skrive korte programmer i C#, Visual Basic .NET og C++/managed C++ som viser bruk av de sentrale konsepter som klassebiblioteket, ADO.NET og ASP.NET GENERELL KOMPETANSE:Kandidaten:- er klar over at .NET rammeverket har styrker og svakheter og at det finnes alternative teknologier Innhold:.NET-rammeverket og arkitekturen. Common Language Runtime (CLR). Common Type System (CTS). Klassebiblioteket. Common Language Specification (CLS). Assemblies. Programmeringsspråkene C#, C++, Visual Basic.NET. Managed code. Web services. ADO.NET. ASP.NET.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Applikasjonsutvikling på .NET-plattformen 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
5 dager 16 200 kr
kurs for deg som skal jobbe med salg og markedsføring på nett [+]
Digital markedsføring   Dette er kurs for deg som skal jobbe med salg og markedsføring på nett. I løpet av 5 kursdager  vil du få god digital kompetanse, lære hva som er godt innhold og tilrettelegge dette for deling på nett. Du skal lære å engasjere kundene dine, lage godt innhold, optimalisere nettsidene for søk på nett, samt bruke google analytics for analyse av trafikken på nettstedet ditt. Etter kurset skal du være i stand til å planlegge og gjenomføre digital markedsføring, kartlegge og optimalisere underveis, og få relevant økt trafikk og konvertering på dine nettsider. Pris kr. 16200,- kurs er fra kl. 09 - 15. Kurs start 10. mai, digital markedsføring: Digital strategi, 10. mai Sosiale medier og innholdsmarkedsføring, 11. mai Skriv gode tekster og nettsider, 1. juni Google Analytics, 2. juni SEO – Søkemotoroptimalisering, 3. juni       [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til HTML5, grunnleggende syntaks og struktur, nye semantiske elementer, dynamiske websider med JavaScript og CSS3, nye skjemaelementer (forms), HTML5 canvas ... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende kunnskaper i HTML, CSS tilsvarende emnet IINI1002 Webutvikling 1. Kunnskaper om grunnleggende programmering og helst litt Javascript er en fordel. Innleveringer: Større eller mindre øvinger tilsvarende 8 øvinger, hvor 6 må være godkjent før endelig karakter settes. Personlig veileder: ja Vurderingsform: Prosjektoppgave som vurderes til bestått/ikke bestått. Karakteren i faget settes på grunnlag av en individuell 4-timers nettbasert hjemmeeksamen. Klageadgang i dette faget gjelder hver enkelt vurderingsdel. Ansvarlig: Atle Nes Eksamensdato: 09.12.13 / 12.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten:- forstår problemstillinger knyttet til bruk av ikke-standardisert teknologi- har kjennskap til nyttige rammeverk for HTML5 og fallback-løsninger- har kjennskap til problemstillinger knyttet til bruk av ulike medieformater FERDIGHETER:Kandidaten:- kan ta i bruk nye semantiske elementer fra HTML5- kan ta i bruk ny funksjonalitet fra CSS3 og JavaScript på nettstedet- kan ta i bruk nye skjemaelementer og -attributter fra HTML5- kan tegne på et canvas-element med JavaScript- kan legge til multimedia ved hjelp av video- og audio-elementet- kan lage nettsider som tilpasser seg mobile enheter og utnytter egenskaper hos disse- kan bruke lokal lagring til å lagre og hente fram data- kan bruke XMLHttpRequest2 til kommunikasjon med webtjeneren- kan lage en større HTML5-basert webløsning GENERELL KOMPETANSE:Kandidaten:- får et overblikk over ny webteknologi som er i ferd med å bli standardisert Innhold:Introduksjon til HTML5, grunnleggende syntaks og struktur, nye semantiske elementer, dynamiske websider med JavaScript og CSS3, nye skjemaelementer (forms), HTML5 canvas til grafikk og tegning, HTML5 video og audio, mobile enheter og device access, lokal lagring av applikasjoner og data, dataoverføring med Web SocketsLes mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag HTML5 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Oslo 5 dager 27 900 kr
03 Nov
03 Nov
ISO 27032 Lead Cybersecurity Manager [+]
ISO 27032 Lead Cybersecurity Manager [-]
Les mer
4 dager 36 000 kr
08 Sep
03 Nov
Introduction to the Junos Operating System (IJOS) [+]
IJOS: Introduction to the Junos Operating System [-]
Les mer
Virtuelt klasserom 2 dager 13 500 kr
XML er en moden standard for å utveksle informasjon mellom applikasjoner. Med XML og relaterte standarder som XSL(T) og XQuery er det mulig å utvikle distribuerte nettbas... [+]
Kursinstruktør Terje Berg-Hansen Terje Berg-Hansen har bred erfaring fra prosjektledelse, utvikling og drift med små og store databaser, både SQL- og NoSQL-baserte. I tillegg til å undervise i etablerte teknologier leder han også Oslo Hadoop User Group, og er levende interessert i nye teknologier, distribuerte databaser og Big Data Science.    Kursinnhold XML er en moden standard for å utveksle informasjon mellom applikasjoner. Med XML og relaterte standarder som XSL(T) og XQuery er det mulig å utvikle distribuerte nettbaserte tjenester for utveksling av data i et standardisert format.    Målsetting Deltakerne vil etter kurset ha en grunnleggende forståelse av og kjennskap til hvorfor og hvordan XML kan anvendes for å oppnå en bedre utveksling og deling av strukturert og ustrukturert informasjon.   Forkunnskaper Grunnleggende kunnskaper om internett, HTML og CSS er en fordel, men ikke nødvendig for å ta dette kurset.   Kursinnhold Introduksjon Introduksjon til XML og XML-relaterte teknologier, som XPath, XQuery og XSL XML-verktøy Editorer og verktøy for validering, søk og endring av XML Grunnleggende XML XML struktur og syntaks. Gjennomgang av målene for XML. Lage og utforme XML dokumenter Navnerom (namespaces) Oppretting og bruk av navnerom for å skille elementer og funksjoner med samme navn. Validering av  XML Gjennomgang av teknologier som Document Type Definitions (DTD's) og XML Schemas for å kontrollere og styre struktur og data i XML filer Presentasjon av XML Bruk av html og CSS til å presentere XML data Søking i XML Søk i XML-dokumenter med XPath . Introduksjon til XSL(T) Kort om XSL og XSL Transformations. Bruk av XSLT til å formatere, sortere, filtrere og konvertere XML Data   Gjennomføring Kurset gjennomføres med en kombinasjon av online læremidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvelsesoppgaver til hovedtemaene som gjennomgås.   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Klient- kontra tjener-programmering. Klientside-validering. Objektmodellen i VB. Response-objektet. Request-objektet. HTML forms. GET/POST. Prosessering av forms-informas... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende programmering i for eksempel C# eller VB Innleveringer: Øvinger: 5 av 11 må være godkjent. Alle arbeidskravene må være godkjente for at studenten skal kunne fremstille seg til vurdering. Personlig veileder: ja Vurderingsform: Prosjektoppgave som vurderes til bestått/ikke bestått. Ansvarlig: Grethe Sandstrak         Læremål: Etter å ha gjennomført emnet skal kandidaten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan konstruere en web-appliksjon ved hjelp av ASP .NET- ut fra en gitt problemstilling- kjenner til ulike objekter/ elementer/ kontroller som kan brukes for å lage gode brukergrensesnitt i ASP .NET applikasjoner FERDIGHETER:Kandidaten kan:- sette opp programmiljø for å utvikle og kjøre ASP. NET web applikasjoner på egen pc- kan finne fram, sette seg inn i og anvende dokumentasjon om .NET Framework library- lage ASP.NET web-applikasjoner- der bruker for opp spesialtilpassede web-sider- som kommuniserer med en database via SQL- som kommuniserer med datafiler- som er robuste og tar høyde for ulike metoder for hacking GENERELL KOMPETANSE:Kandidaten kan:- kommunisere om web-applikasjoner med relevant begrepsapparat Innhold:Klient- kontra tjener-programmering. Klientside-validering. Objektmodellen i VB. Response-objektet. Request-objektet. HTML forms. GET/POST. Prosessering av forms-informasjon. Å lagre tilstandsinformasjon: cookies, applikasjons- og session-objekt. Å bruke ferdige ASP.NET-komponenter. Datafiler på tjenersiden. Generelt om databaser. Bruk av DataSet-objekt. Hvordan bruke SQL direkte fra ASP.NET-program. Transaksjoner, låsing, skalering, sikkerhet. Debugging. Programmeringspråk er valgfritt (VB.NET eller C#.NET).Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Webprogrammering i ASP.NET 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Nettkurs 2 timer 1 990 kr
Er du på jakt etter mer avansert funksjonalitet på forsidene dine? På dette webinaret lærer du mer om å sette inn innhold fra andre kilder og å sy sammen komponente... [+]
Er du på jakt etter mer avansert funksjonalitet på forsidene dine? På dette webinaret lærer du mer om å sette inn innhold fra andre kilder og å sy sammen komponentene på siden. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Sider og sideoppsett Bli kjent med Webdel-sider og oppsett Hvordan legge til skriptsnutter og elementer fra andre nettsider   Bygg inn innhold Legg inn embed-kode Forberede og presentere en PowerPoint-presentasjon på forsiden ved hjelp av Office Web Apps/Office Online   Forsider og dashboards Forberede og presentere en Excel-bok på forsiden med Excel Services Forberede og presentere en Visio-tegning som forsidemeny med Visio Services   Dynamiske sider Målgrupper Koble sammen webdeler og la innhold i en webdel påvirke innholdet i en annen   3 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Gratis support [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Installering av Linux, hva er Linux, distribusjoner, GNU, GPL, Linus Torvalds etc. Historikk, Linux skrivebordsmiljø inkl. Filbehandler, Linux-programmer, kommandobasert ... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Kunnskaper tilsvarende emnet IINI1001 IT-Introduksjon Innleveringer: 6 av 10 øvinger er obligatoriske. Vurderingsform: 1-timers eksamen på nett av typen flervalgsprøve Ansvarlig: Geir Maribu Eksamensdato: 09.12.13 / 12.05.14         Læremål: KUNNSKAPER:Kandidaten:- kan forklare hva Linux er, dvs. historikk, kultur og hvilken rolle og hvilken påvirkning Linux har i dag.- kan redegjøre for hva som menes med åpen og fri programvare og hvordan Linux er en del av denne kulturen. FERDIGHETER:Kandidaten kan:- installere Linux aleine på maskin, i dualboot med Windows eller inni et virtualiseringssystem.- bruke Linux skrivebordsmiljø (GUI) og tilhørende applikasjoner som et reelt alternativ til MS Windows- bruke kommandogrensesnittet til de vanligste fil- og mappeoperasjonene, og til kommandoer der GUI-et ikke er det beste valget- utføre vanlig systemarbeid på egen Linux-maskin som vedlikehold, installering, oppdatering- vise i praksis hvordan Linux kan integreres med Window og Mac GENERELL KOMPETANSE:Kandidaten:- er bevisst på hva slags utviklingsmiljø Linux er en del av Innhold:Installering av Linux, hva er Linux, distribusjoner, GNU, GPL, Linus Torvalds etc. Historikk, Linux skrivebordsmiljø inkl. Filbehandler, Linux-programmer, kommandobasert Linux, omdirigering, kanaler etc Tilgangsrettigheter, prosesser kommandoskallet, skallprogrammering, filsystemer, installering av programmer, oppdatering, brukere og brukeradministrasjon, remote login, cron-jobber, loggfiler, backupLes mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Praktisk Linux 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
Nettkurs 2 timer 1 990 kr
Forsiden på området er det første brukerne møter. På dette webinaret lærer du hvordan man kan løfte frem SharePoint-innhold på forsiden via forsideredigering, sam... [+]
Forsiden på området er det første brukerne møter. På dette webinaret lærer du hvordan man kan løfte frem SharePoint-innhold på forsiden via forsideredigering, samt hvordan man lager gode område-forsider generelt. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Forstå SharePoint håndtering av forsider Wiki bibliotek Legge til flere sider Versjonering Områdets startside   Bli kjent med formateringsvalg Generelle sideoppsett Tabeller for å styre layout   Håndtere bilder og grafikk Områdeinnhold   Tilpass webdeler for å løfte frem innhold fra forskjellige kilder Sette inn app-del App-/webdel-spesifike visninger Webdel-side   Eksempler på anvendelse av webdeler Appdel for bibliotek basert på visning Medlemmer Presentere person   [-]
Les mer