IT-kurs
Rogaland
Du har valgt: Egersund
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Egersund ) i IT-kurs
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Oslo 3 dager 20 900 kr
17 Sep
17 Sep
17 Dec
Introduction to C# and .NET [+]
Introduction to C# and .NET [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
The Implementing Cisco Enterprise Wireless Networks course gives you the knowledge and skills needed to secure wireless network infrastructure and troubleshoot any relate... [+]
COURSE OVERVIEW You’ll learn how to implement and secure a wireless network infrastructure and use Cisco Identity Service Engine (ISE), Cisco Prime Infrastructure (PI), and Cisco Connect Mobile Experience to monitor and troubleshoot network issues.   The course provides hands-on labs to reinforce concepts including deploying Cisco Prime Infrastructure Release 3.5, Cisco Catalyst 9800 Wireless Controller Release IOS XE Gibraltar 16.10, Cisco Digital Network Architecture (DNA) Center Release 1.2.8, Cisco CMX Release 10.5, Cisco MSE Release 8.0 features and Cisco Identity Services Engine (ISE) Release 2.4.   This course also helps you prepare to take the Implementing Cisco Enterprise Wireless Networks (300-430 ENWLSI) exam, which is part of the new CCNP Enterprise certification. Passing the exam will also provide you with the Cisco Certified Specialist - Enterprise Wireless Implementation certification.   TARGET AUDIENCE Individuals needing to understand how to implement, secure and troubleshoot a Cisco Enterprise Wireless Network.   COURSE OBJECTIVES After completing this course you should be able to: Implement network settings to provide a secure wireless network infrastructure Troubleshoot security issues as it relates to the wireless network infrastructure Implement a secure wireless client and troubleshoot wireless client connectivity issues Implement and troubleshoot QoS in wireless networks Implement and troubleshoot advanced capabilities in wireless network services   COURSE CONTENT Securing and Troubleshooting the Wireless Network Infrastructure Implement Secure Access to the WLCs and Access Points Configure the Network for Access Point 802.1X Authentication Use Cisco DNA Center for Controller and AP Auto Install Implement Cisco Prime Infrastructure Define Network Troubleshooting Techniques Troubleshoot Access Point Join Issues Monitor the Wireless Network Implementing and Troubleshooting Secure Client Connectivity Configure the Cisco WLC for Wireless Client 802.1x Authentication Configure the Wireless Client for 802.1X Authentication Configure a Wireless LAN for FlexConnect Implement Guest Services in the Wireless Network Configure the Cisco WLC for Centralized Web Authentication Configure Central Web Authentication on Cisco ISE Implement BYOD Implement Location-Aware Guest Services Troubleshoot Client Connectivity Describe Issues that Affect Client Performance Monitor Wireless Clients Implementing and Troubleshooting QoS in Wireless Networks Implement QoS in the Wireless Network Configure the Cisco WLC to Support Voice Traffic Optimize Wireless Utilization on the Cisco WLC Implement Cisco AVC in the Wireless Network Implement Multicast Services Implement mDNS Service Implement Cisco Media Stream Troubleshoot QoS Issues in the Wireless Network Troublehoot mDNS Issues Troubleshoot Media Stream Issues Implementing and Troubleshooting Advanced Wireless Network Services Implement Base Location Services on Cisco Prime Infrastructure Implement Hyperlocation in the Wireless Network Implement Detect and Locate Services on Cisco CMX Implement Analytics on Cisco CMX Implement Presence Services on Cisco CMX Monitor and Locate Rogue Devices with Cisco Prime Infrastructure and Cisco CMX Monitor and Detect Wireless Clients with Cisco CMX and Cisco DNA Center Run Analytics on Wireless Clients Troubleshoot Location Accuracy with Cisco Hyperlocation Monitor and Manage RF Interferers on the Cisco WLC Monitor and Manager RF Interferers on Cisco Prime Infrastructure and Cisco CMX Labs Lab Familiarization (Base Learning Lab) Configure Secure Management Access for WLCs and APs Add Network Devices and External Resources to Cisco Prime Infrastructure Capture a Successful AP Authentication Implement AAA Services for Central Mode WLANs Implement AAA Services for FlexConnect Mode WLANs Configure Guest Services in the Wireless Network Configure BYOD in the Wireless Network Capture a Successful Client Authentications Configure QoS in the Wireless Network for Voice and Video Services Configure Cisco AVC in the Wireless Network Capture Successful QoS Traffic Marking in the Wireless Network Configure Detect and Locate Services on the Cisco CMX Identify Wireless Clients and Security Threats [-]
Les mer
1 dag 9 500 kr
08 Sep
03 Nov
AI-3004: Build an Azure AI Vision solution with Azure AI services [+]
AI-3004: Build an Azure AI Vision solution with Azure AI services [-]
Les mer
Virtuelt klasserom 4 dager 24 000 kr
This course provides the knowledge and skills to design and implement DevOps processes and practices. [+]
Students will learn how to plan for DevOps, use source control, scale Git for an enterprise, consolidate artifacts, design a dependency management strategy, manage secrets, implement continuous integration, implement a container build strategy, design a release strategy, set up a release management workflow, implement a deployment pattern, and optimize feedback mechanisms TARGET AUDIENCE Students in this course are interested in designing and implementing DevOps processes or in passing the Microsoft Azure DevOps Solutions certification exam. COURSE OBJECTIVES Plan for the transformation with shared goals and timelines Select a project and identify project metrics and Key Performance Indicators (KPI's) Create a team and agile organizational structure Design a tool integration strategy Design a license management strategy (e.g., Azure DevOps and GitHub users) Design a strategy for end-to-end traceability from work items to working software Design an authentication and access strategy Design a strategy for integrating on-premises and cloud resources Describe the benefits of using Source Control Describe Azure Repos and GitHub Migrate from TFVC to Git Manage code quality, including technical debt SonarCloud, and other tooling solutions Build organizational knowledge on code quality Explain how to structure Git repos Describe Git branching workflows Leverage pull requests for collaboration and code reviews Leverage Git hooks for automation Use Git to foster inner source across the organization Explain the role of Azure Pipelines and its components Configure Agents for use in Azure Pipelines Explain why continuous integration matters Implement continuous integration using Azure Pipelines Design processes to measure end-user satisfaction and analyze user feedback Design processes to automate application analytics Manage alerts and reduce meaningless and non-actionable alerts Carry out blameless retrospectives and create a just culture Define an infrastructure and configuration strategy and appropriate toolset for a release pipeline and application infrastructure Implement compliance and security in your application infrastructure Describe the potential challenges with integrating open-source software Inspect open-source software packages for security and license compliance Manage organizational security and compliance policies Integrate license and vulnerability scans into build and deployment pipelines Configure build pipelines to access package security and license ratings   COURSE CONTENT Module 1: Get started on a DevOps transformation journey Module 1 Lessons Introduction to DevOps Choose the right project Describe team structures Choose the DevOps tools Plan Agile with GitHub Projects and Azure Boards Introduction to source control Describe types of source control systems Work with Azure Repos and GitHub Lab 1: Agile planning and portfolio management with Azure Boards   Lab 2: Version controlling with Git in Azure Repos   After completing Module 1, students will be able to: Understand what DevOps is and the steps to accomplish it Identify teams to implement the process Plan for the transformation with shared goals and timelines Plan and define timelines for goals Understand different projects and systems to guide the journey Select a project to start the DevOps transformation Identify groups to minimize initial resistance Identify project metrics and Key Performance Indicators (KPI's) Understand agile practices and principles of agile development Create a team and agile organizational structure Module 2: Development for enterprise DevOps Module 2 Lessons Structure your Git Repo Manage Git branches and workflows Collaborate with pull requests in Azure Repos Explore Git hooks Plan foster inner source Manage Git repositories Identify technical debt Lab 3: Version controlling with Git in Azure Repos   After completing Module 2, students will be able to: Understand Git repositories Implement mono repo or multiple repos Explain how to structure Git Repos Implement a change log Describe Git branching workflows Implement feature branches Implement GitFlow Fork a repo Leverage pull requests for collaboration and code reviews Give feedback using pull requests Module 3: Implement CI with Azure Pipelines and GitHub Actions Module 3 Lessons Explore Azure Pipelines Manage Azure Pipeline agents and pools Describe pipelines and concurrency Explore Continuous integration Implement a pipeline strategy Integrate with Azure Pipelines Introduction to GitHub Actions Learn continuous integration with GitHub Actions Design a container build strategy Lab 4: Configuring agent pools and understanding pipeline styles   Lab 5: Enabling continuous integration with Azure Pipelines   Lab 6: Integrating external source control with Azure Pipelines   Lab 7: Implementing GitHub Actions by using DevOps Starter   Lab 8: Deploying Docker Containers to Azure App Service web apps   After completing Module 3, students will be able to: Describe Azure Pipelines Explain the role of Azure Pipelines and its components Decide Pipeline automation responsibility Understand Azure Pipeline key terms Choose between Microsoft-hosted and self-hosted agents Install and configure Azure pipelines Agents Configure agent pools Make the agents and pools secure Use and estimate parallel jobs Module 4: Design and implement a release strategy Module 4 Lessons Introduction to continuous delivery Create a release pipeline Explore release strategy recommendations Provision and test environments Manage and modularize tasks and templates Automate inspection of health Lab 9: Creating a release dashboard   Lab 10: Controlling deployments using Release Gates   After completing Module 4, students will be able to: Explain continuous delivery (CD) Implement continuous delivery in your development cycle Understand releases and deployment Identify project opportunities to apply CD Explain things to consider when designing your release strategy Define the components of a release pipeline and use artifact sources Create a release approval plan Implement release gates Differentiate between a release and a deployment Module 5: Implement a secure continuous deployment using Azure Pipelines Module 5 Lessons Introduction to deployment patterns Implement blue-green deployment and feature toggles Implement canary releases and dark launching Implement A/B testing and progressive exposure deployment Integrate with identity management systems Manage application configuration data Lab 11: Configuring pipelines as code with YAML   Lab 12: Setting up and running functional tests   Lab 13: Integrating Azure Key Vault with Azure DevOps   After completing Module 5, students will be able to: Explain the terminology used in Azure DevOps and other Release Management Tooling Describe what a Build and Release task is, what it can do, and some available deployment tasks Implement release jobs Differentiate between multi-agent and multi-configuration release job Provision and configure target environment Deploy to an environment securely using a service connection Configure functional test automation and run availability tests Setup test infrastructure Use and manage task and variable groups Module 6: Manage infrastructure as code using Azure and DSC Module 6 Lessons Explore infrastructure as code and configuration management Create Azure resources using Azure Resource Manager templates Create Azure resources by using Azure CLI Explore Azure Automation with DevOps Implement Desired State Configuration (DSC) Implement Bicep Lab 14: Azure deployments using Azure Resource Manager templates   After completing Module 6, students will be able to: Understand how to deploy your environment Plan your environment configuration Choose between imperative versus declarative configuration Explain idempotent configuration Create Azure resources using ARM templates Understand ARM templates and template components Manage dependencies and secrets in templates Organize and modularize templates Create Azure resources using Azure CLI Module 7: Implement security and validate code bases for compliance Module 7 Lessons Introduction to Secure DevOps Implement open-source software Software Composition Analysis Static analyzers OWASP and Dynamic Analyzers Security Monitoring and Governance Lab 15: Implement security and compliance in Azure Pipelines   Lab 16: Managing technical debt with SonarQube and Azure DevOps   After completing Module 7, students will be able to: Identify SQL injection attack Understand DevSecOps Implement pipeline security Understand threat modeling Implement open-source software Explain corporate concerns for open-source components Describe open-source licenses Understand the license implications and ratings Work with Static and Dynamic Analyzers Configure Microsoft Defender for Cloud Module 8: Design and implement a dependency management strategy Module 8 Lessons Explore package dependencies Understand package management Migrate, consolidate, and secure artifacts Implement a versioning strategy Introduction to GitHub Packages Lab 17: Package management with Azure Artifacts   After completing Module 8, students will be able to: Define dependency management strategy Identify dependencies Describe elements and componentization of a dependency management Scan your codebase for dependencies Implement package management Manage package feed Consume and create packages Publish packages Identify artifact repositories Migrate and integrate artifact repositories Module 9: Implement continuous feedback Module 9 Lessons Implement tools to track usage and flow Develop monitor and status dashboards Share knowledge within teams Design processes to automate application analytics Manage alerts, Blameless retrospectives and a just culture Lab 18: Monitoring application performance with Application Insights   Lab 19: Integration between Azure DevOps and Microsoft Teams   Lab 20: Sharing Team Knowledge using Azure Project Wikis   After completing Module 9, students will be able to: Implement tools to track feedback Plan for continuous monitoring Implement Application Insights Use Kusto Query Language (KQL) Implement routing for mobile applications Configure App Center Diagnostics Configure alerts Create a bug tracker Configure Azure Dashboards Work with View Designer in Azure Monitor [-]
Les mer
Oslo 2 dager 12 900 kr
10 Sep
10 Sep
12 Nov
Power BI Desktop – DAX formler [+]
Power BI Desktop – DAX formler [-]
Les mer
Oslo 2 dager 15 900 kr
09 Oct
09 Oct
27 Nov
ITIL® 4 Foundation - 2 days course for ITIL experienced [+]
ITIL® 4 Foundation - 2 days course for ITIL experienced [-]
Les mer
Oslo Bergen 4 dager 22 500 kr
18 Aug
18 Aug
13 Oct
DP-080: Querying Data with Microsoft Transact-SQL [+]
DP-080: Querying Data with Microsoft Transact-SQL [-]
Les mer
Virtuelt eller personlig 1 dag 6 500 kr
Kurset passer for deg som har god erfaring i generell bruk av Revit og som skal prosjektere og utføre hydrauliske beregninger på sprinkleranlegg. [+]
Her er et utvalg av temaene du vil lære på kurset: Oppsett av nytt sprinklerprosjekt i Revit Prosjektering av sprinkleranlegg Behandling av rørtyper, systemer etc Lage egne produkter for sprinklerhoder og andre produkter Hydrauliske beregninger IFC-eksport Oppsett av tegninger [-]
Les mer
1 dag 9 500 kr
10 Oct
12 Dec
AZ-2005: Develop AI agents using Azure OpenAI and the Semantic Kernel SDK [+]
AZ-2005: Develop AI agents using Azure OpenAI and the Semantic Kernel SDK [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 3 dager 20 900 kr
05 Nov
05 Nov
Web Development QuickStart [+]
Web Development QuickStart [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Installering og bruk av valgt databaseverktøy (MySQL). Flerbrukerproblematikk og databaseadministrasjon (DBA) i SQL. Bruk av SQL og innebygd funksjonalitet i databaseverk... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: IINI1003 Databaser eller tilsvarende forhåndskunnskaper Innleveringer: Tilsvarende 8 obligatoriske øvinger må være godkjent før endelig karakter settes. Personlig veileder: ja Vurderingsform: Individuell netteksamen, 2 timer. Ansvarlig: Tore Mallaug Eksamensdato: 13.12.13 / 16.05.14         Læremål: KUNNSKAPERKandidaten:- kjenner sentrale begreper innen flerbrukerproblematikk og databaseadministrasjon, og kan gjøre rede for disse- forstår hvordan innebygd funksjonalitet i relasjonsdatabasesystem kan utnyttes i en klient/tjener-arkitektur- vet hvordan ulike typer data kan lagres og representeres i et databasesystem; tekst, XML og temporale data.- kan gjøre rede for hvordan NoSQL-løsninger er et alternativ til relasjonsdatabaser i Web-løsninger FERDIGHETERKandidaten:- kan administrere en flerbrukerdatabase med SQL-kommandoer i et valgt databaseverktøy- lager sin egen (mest mulig normaliserte) relasjonsdatabase med nøkler og referanseintegritet som ikke bare lagrer strukturelle data, men også tekst og semi-strukturelle data (XML)- kan utnytte databaseverktøyet funksjonalitet til utvidet bruk av SQL i en klient/tjener-sammenheng for å støtte opp rundt applikasjoner mot databasen- kan utnytte databaseverktøyet til å lagre temporale data- kan utføre SQL-spørringer mot ulike typer data i en database GENERELL KOMPETANSEKandidaten:- viser en bevisst holdning til lagring og representasjon av ulike typer data i et informasjonssystem- viser en bevisst holdning til databasedesign for å unngå unødvendig dobbeltlagring av data i en database Innhold:Installering og bruk av valgt databaseverktøy (MySQL). Flerbrukerproblematikk og databaseadministrasjon (DBA) i SQL. Bruk av SQL og innebygd funksjonalitet i databaseverktøyet (bruk av funksjoner/prosedyrer og triggere). Utnytte databaseverktøyet i en klient/tjener -arkitektur. Se på forholdet database - applikasjon. Lagring av ulike typer data; tekst, XML (semi-strukturelle data), dato/tid (temporale data). Enkel bruk av NoSQL-løsning. MySQL blir brukt i eksempler, men noen utfyllende eksempler i Oracle kan forekomme i lærestoffet.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Databaser 2 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Oslo 3 dager 21 000 kr
18 Aug
18 Aug
20 Oct
ITIL® Specialist - Create, Deliver & Support [+]
ITIL® Specialist - Create, Deliver & Support [-]
Les mer