IT-kurs
Sogn og Fjordane
Du har valgt: Førde
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Førde ) i IT-kurs
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Majorstuen 3 dager 12 500 kr
08 Sep
13 Oct
24 Nov
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan du ut... [+]
Etter 3 dager med kurs vil du bli løftet opp på et helt nytt nivå. Du vil kunne kvalitetssikre ditt arbeid og bruke mindre tid på å løse dine arbeidsoppgaver. Du vil garantert merke stor forskjell når du er tilbake på jobb! Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Endre innstillingene i Excel for å få brukergrensesnittet du ønsker Kvalitetssikre regnearkene dine og unngå feil input gjennom validering Beskytt regneark mot å bli ødelagt ved feil bruk og feil lagring Betinget formatering gjør det enkelt å følge med sentrale verdier i regnearket. Bruk flere arbeidsbøker samtidig og utvid mulighetene dine Sortering og filtrering gjør arbeidet med lister og tabeller enkelt og effektivt. Bruk av funksjoner for å dra ut ønsket data fra en celle eller område Pivottabeller og pivotdiagram kan brukes for å trekke ut og vise data på en oversiktlig måte. Verktøy for analyse av data gjør deg i stand til å løse avanserte hva skjer hvis-spørsmål. Legg inn knapper/kontroller for å gjøre det enda lettere å bruke regnearkene dine Deling av arbeidsbøker gjør det lett å samarbeide med andre kollegaer. Innspilling av makroer sikrer konsekvent og korrekt databehandling Lag makroer ved å skrive programkoden selv (VBA) I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag. Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Excel erfaring som de gjerne deler med deg! «Fikk veldig mye ny kunnskap på relativt kort tid. Har blitt mye mer bevisst på hva Excel kan brukes til og det er mye mer enn jeg først trodde. Veldig god kursleder» Maria Amundsen, Jernbaneverkets Fellestjenester Kursinnhold Slik kan du kvalitetssikre regnearkmodellene dine - Effektiv og nyttig validering sikrer mot feil input- Beskytt regneark og bok mot å bli ødelagt ved feil bruk Lær deg å bygge gode og effektive formler med - Riktig bruk av cellereferanser- Navning av celler- Nyttige tekstformler- Smarte, innebyggede funksjoner- Å lage egne funksjoner for mer kompliserte formler som du ofte anvender Lær deg de smarte triksene du trenger til å arbeide med flere ark - Enkel kopiering av ark- Formler som summerer data fra flere ark- Hvordan du kan spare tid ved å arbeide på flere ark samtidig Slik bruker du flere Excel-bøker samtidig og utvider mulighetene dine - Riktig bruk av cellereferanser til annen bok, lær om fallgrubene og hvordan du unngår dem- Lær hvordan du setter opp og bruker hyperkoblinger til å hoppe mellom deler av prosjektet ditt- Lær om hvordan du lager dynamiske koblinger mellom Excel og andre programmer Smart bruk av Excel-maler gjør deg mer effektiv - Lær å lage, bruke og endre maler Når du vil koble Excel til bedriftens database-system - Forstå grunnprinsippene for en database- Lær hvordan du automatisk trekker data ut fra databasen og får dem skrevet inn i regnearket Slik analyserer du store datamengder på en effektiv og enkel måte - Lær deg riktig og god bruk av verktøyet Pivot- Lag sammendrag av dataene dine akkurat slik du ønsker- Lag pivot-tabeller basert direkte på bedriftens database Lær deg de nyttige og gode verktøyene for behandling av lister i Excel - Bruk av det nye, flotte verktøyet ’Tabell’- Forskjellige måter å sortere lister på- Hvordan du bruker filter for å plukke ut poster fra en liste- Hvordan du kan sette inn mellomsummer i listene dine Slik kan du forbedre brukervennligheten av regnearkene dine - Sett opp smarte kontroller som gjør det lettere for ukyndige brukere å anvende regneark-applikasjonene din- Lær deg å bruke validering til innskriving av lange tekster i celler Ta det store skrittet: lær deg effektiv og riktig makroprogrammering - Bruk av makroer kan gjøre dine Excel-applikasjoner raskere, enklere å bruke og sikrere- Makroinnspilleren hjelper deg til å lage flotte, nyttige og effektive makroer uten at du trenger å kunne programmering- Gå videre: lær deg også å forstå hemmeligheten ved programmering slik at du kan skrive programkoden selv. [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
1 dag 8 000 kr
This course introduces fundamentals concepts related to artificial intelligence (AI), and the services in Microsoft Azure that can be used to create AI solutions. [+]
COURSE OVERVIEW The course is not designed to teach students to become professional data scientists or software developers, but rather to build awareness of common AI workloads and the ability to identify Azure services to support them. The course is designed as a blended learning experience that combines instructor-led training with online materials on the Microsoft Learn platform (https://azure.com/learn). The hands-on exercises in the course are based on Learn modules, and students are encouraged to use the content on Learn as reference materials to reinforce what they learn in the class and to explore topics in more depth. TARGET AUDIENCE The Azure AI Fundamentals course is designed for anyone interested in learning about the types of solution artificial intelligence (AI) makes possible, and the services on Microsoft Azure that you can use to create them. You don’t need to have any experience of using Microsoft Azure before taking this course, but a basic level of familiarity with computer technology and the Internet is assumed. Some of the concepts covered in the course require a basic understanding of mathematics, such as the ability to interpret charts. The course includes hands-on activities that involve working with data and running code, so a knowledge of fundamental programming principles will be helpful. COURSE OBJECTIVES  After completing this course, you will be able to: Describe Artificial Intelligence workloads and considerations Describe fundamental principles of machine learning on Azure Describe features of computer vision workloads on Azure Describe features of Natural Language Processing (NLP) workloads on Azure Describe features of conversational AI workloads on Azure   COURSE CONTENT Module 1: Introduction to AI In this module, you'll learn about common uses of artificial intelligence (AI), and the different types of workload associated with AI. You'll then explore considerations and principles for responsible AI development. Artificial Intelligence in Azure Responsible AI After completing this module you will be able to Describe Artificial Intelligence workloads and considerations Module 2: Machine Learning Machine learning is the foundation for modern AI solutions. In this module, you'll learn about some fundamental machine learning concepts, and how to use the Azure Machine Learning service to create and publish machine learning models. Introduction to Machine Learning Azure Machine Learning After completing this module you will be able to Describe fundamental principles of machine learning on Azure Module 3: Computer Vision Computer vision is a the area of AI that deals with understanding the world visually, through images, video files, and cameras. In this module you'll explore multiple computer vision techniques and services. Computer Vision Concepts Computer Vision in Azure After completing this module you will be able to Describe features of computer vision workloads on Azure Module 4: Natural Language Processing This module describes scenarios for AI solutions that can process written and spoken language. You'll learn about Azure services that can be used to build solutions that analyze text, recognize and synthesize speech, translate between languages, and interpret commands. After completing this module you will be able to Describe features of Natural Language Processing (NLP) workloads on Azure Module 5: Conversational AI Conversational AI enables users to engage in a dialog with an AI agent, or *bot*, through communication channels such as email, webchat interfaces, social media, and others. This module describes some basic principles for working with bots and gives you an opportunity to create a bot that can respond intelligently to user questions. Conversational AI Concepts Conversational AI in Azure After completing this module you will be able to Describe features of conversational AI workloads on Azure   TEST CERTIFICATION Recommended as preparation for the following exams: Exam AI-900: Microsoft Azure AI Fundamentals. HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
Virtuelt klasserom 3 dager 18 000 kr
The Python Programming 2 course comprises sessions dealing with advanced object orientation,iterators and generators,comprehensions,decorators,multithreading,functional p... [+]
COURSE OVERVIEW   The delegate will learn how to exploit advanced features of the Python language to build complex and efficient applications. Exercises and examples are used throughout the course to give practical hands-on experience with the techniques covered. TARGET AUDIENCE The Python Programming 2 course is designed for existing Python developers who have a good grounding in the basics and want to exploit some of the advanced features of the language. For the delegate for whom Python is their first programming language,we recommend taking the Python Programming 1 course first,then taking some time to practice the skills gained,before returning to take the Python Programming 2 course.   COURSE OBJECTIVES This course aims to provide the delegate with the knowledge to be able to interpret,write,and troubleshoot complex Python applications exploiting inheritance and polymorphism,mixins,composition and aggregation,iterators,generators,decorators,comprehension,concurrency,functional programming,and RESTful web services. COURSE CONTENT DAY 1 COURSE INTRODUCTION Administration and Course Materials Course Structure and Agenda Delegate and Trainer Introductions SESSION 1: ADVANCED OBJECT ORIENTATION The self Keyword Constructors and Destructors Encapsulation Inheritance Introspection with __dict__,__name__,__module__,__bases__ The hasattr(obj,attr),dir(obj),help(obj) functions Polymorphism Abstract Classes Multiple Inheritance and Mixins Composition and Aggregation Static Members SESSION 2: ITERATORS & GENERATORS Iterables Iterators Custom Iterators Generators Yield vs. Return SESSION 3: COMPREHENSIONS List Comprehension Set Comprehension The zip Function Dictionary Comprehension DAY 2 SESSION 4: DECORATORS Decorators Decorator Functions Decorator Annotations Decorator Use Cases Labs SESSION 5: FUNCTIONAL PROGRAMMING Functional Programming Lambdas Immutability Mapping Filtering Reducing SESSION 6: MULTITHREADING Threads Multithreading Thread Construction Thread Execution Thread Sleep Joins Data Sharing Synchronisation Multithreading vs. Multiprocessing DAY 3 SESSION 7: WEB SERVICES RESTful Web Services JSON Data CRUD and HTTP RESTful Clients RESTful APIs SESSION 8: UNIT TESTING Unit Testing Terminology Test Classes Test Fixtures Test Cases Assertions Test Runners   FOLLOW ON COURSES Data Analysis Python [-]
Les mer
Oslo 2 dager 14 000 kr
14 Aug
14 Aug
MB-300: Microsoft Dynamics 365: Core Finance and Operations [+]
MB-300: Microsoft Dynamics 365: Core Finance and Operations [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Hva er XML og nytteverdien av denne teknologien. Lagre data, endre data, hente ut data i XML. Validering av XML (bruk av skjema). Eksempler på praktisk bruk av XML inklud... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Kunnskaper i HTML tilsvarende IINI1002 Webutvikling 1. Grunnleggende kunnskaper i programmering er en fordel. Innleveringer: Tilsvarende 8 obligatoriske øvinger må være godkjent før endelig karakter settes. Personlig veileder: ja Vurderingsform: Individuell netteksamen, 3 timer. Ansvarlig: Tore Mallaug Eksamensdato: 09.12.13 / 12.05.14         Læremål: Etter å ha gjennomført emnet XML -teknologi skal studenten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kjenner sentrale begreper innen XML-teknologi og hvordan teknologien kan brukes, og kan gjøre rede for dette- forstår hvordan et XML-dokument er bygd opp (tre-struktur) og vite hvordan skjema brukes til å validere (sette krav til) struktur og datainnhold til dokumentet- forstår skillet mellom data (innhold), struktur (skjema) og presentasjon- kan gjøre rede for noen praktiske eksempler på konkret bruk av XML- kjenner til eksempler på hvordan XML kan lagres i en relasjonsdatabase FERDIGHETER:Kandidaten:- kan lage egne løsninger i XML -teknologi for oppbevaring og utveksling av data i et informasjonssystem (e-løsninger og web-løsninger).- kan lage egne skjema i en gitt skjemastandard mot egne eller gitte XML-dokument- vite hvordan en kan endre (oppdatere) struktur og/eller datainnhold til et gitt XML-dokument- kan utføre enkle XQuery-spørringer mot en eller flere XML-dokument GENERELL KOMPETANSE:Kandidaten:- viser en bevisst holdning til lagring og representasjon av semi-strukturelle data i et informasjonssystem- viser en bevisst holdning til å unngå unødvendig dobbeltlagring av data i en XML-struktur Innhold:Hva er XML og nytteverdien av denne teknologien. Lagre data, endre data, hente ut data i XML. Validering av XML (bruk av skjema). Eksempler på praktisk bruk av XML inkludert SVG. Bruk av DTD, XML Schema, XSLT, DOM, Lagring av XML i database. XQuery (for å hente ut data).Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag XML-Teknologi 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Bedriftsintern 2 dager 8 500 kr
Bli funksjonell og skriv konsis, deklarativ kode med Javas Stream API. Workshopen retter seg primært mot Java-utviklere som vil lære mer om funksjonell programmering, lam... [+]
Dette kurset tilbys som bedriftsinternt kurs   Workshopen består av et minimum med teori og et maksimum av praktiske øvelser hvor vi lager streams av  Arrays, List, Set, Map og Files - filtrerer, mapper til nye objekter, utfører aggregeringer og konverterer tilbake til nye collections mm.   Workshopen vil dekke bl.a. Sette opp en stream, med Stream.of(), IntStream.of() og DoubleStream.of() Konvertere et Array til en stream med Arrays.stream() Konvertere en collection av typen List, Set eller Map til en stream med stream() Filtrere ut verdier med filter() Mappe til nye objekter med map() og flatMap() Sortere med sorted() og ulike typer Comparators Aggregere med reduce() og collect() Behandle hvert element med forEach() og forEachOrdered() Gruppere og telle opp forekomster i hver gruppe med collect() Konvertere tilbake til en collection med collect() Konvertere til et objekt med get() Begrense reultatet med limit() Hente enkel statistikk (min, max, average, sum) med reduce() og collect() og bl.a. summarizingInt() Bruke :: til metodereferanser Lese en fil inn i en stream med Files.lines() Behandle hvert element med forEach() og forEachOrdered() Workshopen holdes på norsk og går over 2 dager, fra 10.00-14.00, for tiden online, med dedikert lærer og Microsoft Teams som kommunikasjonsplattform.   [-]
Les mer
Nettkurs 75 minutter 7 000 kr
ITIL® er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. [+]
Sertifiseringsvoucher inneholder sertifiseringstest og digital ITIL Foundation bok. Voucher er gyldig i 1 år. Sertifiseringen består av: 40 spørsmål Multiple Choice For å bestå må du ha minimum 26 riktige (65%) Ingen hjelpemidler tillatt Sertifiseringen kan tas fra ønsket sted (hjemme, kontoret el.l), men du må sitte alene i rommet. Sertifiseringen må gjennomføres på PC med internt/eksternt web kamera. [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Vi utforsker mulighetene med diagrammer i Excel, går gjennom de mest brukte diagramvariantene og utforsker mulighetene. Vi tar også en kort innføring i pivottabeller slik... [+]
Kursinnhold Hva slags data kan brukes som grunnlag for et diagram Stolpediagram Sektordiagram Kombinert diagram Formatering av diagrammer Tips og triks Smarte løsninger Sparkline Hurtiganalyse Bruk av Excels diagrammer i andre Office-programmer [-]
Les mer
Virtuelt klasserom 2 timer 1 990 kr
Power BI – Profesjonelle rapporter [+]
Power BI – Profesjonelle rapporter [-]
Les mer
3 dager 7 900 kr
Etter fullført kurs skal du kunne frilegge, retusjere og sammenkopiere bilder. [+]
Vil du komme igang med Photoshop? På dette kurset lærer du å korrigere farger og kontraster i bilder for å oppnå en bedre kvalitet. Du lærer å retusjere bort uønskede elementer og fjerne rynker. Du lærer å sammenkopiere flere elementer ved hjelp av lag og masker og lagre bilder til ulike medier, med ulik oppløsning og ulike filformater. Når du har vært gjennom dette Photoshop-kurset kan du bearbeide din egen eller andres ide fra skisse til et ferdig bilde. Du kan lagre bildet til det mediet det skal brukes i med høy kvalitet. Dette lærer du: Fjerne bakgrunnen i bildene Fargekorrigering slik at du får spennende og fine bilder Retusjering Sette sammen flere bilder Bruk av masker Jobbe med tekst og form Lagre bilder til ulike medier, med ulik oppløsning og ulike filformater Optimalisering av bilder til web https://igm.no/photoshop-kurs/ [-]
Les mer
Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Autodesk 3ds Max er tilpasset arkitekter, ingeniører, designere og visualiseringseksperter, som leveres med en helt unik funksjonalitet for analyse av lysdistribusjon. [+]
Fleksible kurs for fremtiden Ny kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   3ds Max grunnkurs   Lag fotorealistiske presentasjoner av dine designløsninger! Her er et utvalg av temaene du vil lære på kurset: Grunnleggende funksjoner – Transformationer vha. move, rotate og scale Link til og import av DWG- og DXF-filer Lyssetning med standard lys Rendering med Scanline renderen og Mental Ray – Basics Editering av 2D- og 3D-geometri Dette kurset er tilpasset for arkitekter, ingeniører, designere og visualiseringseksperter, og gir en introduksjon til design og visualisering i 3ds MAX. Kurset vil gjøre deg i stand til å arbeide med lys, materialer og kamera i eksisterende 3D CAD/BIM-modeller.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer