IT-kurs
Hordaland
Du har valgt: Fjell
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Fjell ) i IT-kurs
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettkurs 12 måneder 11 500 kr
ITIL® er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. [+]
ITIL® 4 Foundation-kurset er en introduksjon til ITIL® 4. Kurset lar kandidater se på IT-tjenestestyring gjennom en ende-til-ende driftsmodell, som inkluderer oppretting, levering og kontinuerlig forbedring av IT-relaterte produkter og tjenester. E-læringskurset inneholder 12 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Foundation e-læring (engelsk) i 12 måneder. ITIL® Foundation online voucher til sertifiseringstest + digital ITIL Foundation bok Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. Sertifiseringen består av: 40 spørsmål Multiple Choice 60 minutter + 15 minutter til rådighet dersom du ikke har engelsk som morsmål For å bestå må du ha minimum 26 riktige (65%) Ingen hjelpemidler tillatt ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Nettkurs 5 timer 549 kr
I dette kurset kommer seniorutvikler John Inge Muldal Erlandsen til å dekke Azures viktigste fundamentale konsepter og hjelpe deg på din vei mot skyen. Han kommer til å d... [+]
Dette grunnleggende kurset om Microsoft Azure gir deg en solid forståelse av fundamentale konsepter i Azure-skymiljøet. Kursholderen, seniorutvikler John Inge Muldal Erlandsen, vil veilede deg gjennom nøkkelkomponentene og mulighetene som Azure tilbyr. Microsoft Azure er en ledende skyplattform og konkurrerer direkte med Amazon Web Services (AWS). Azure inneholder et bredt spekter av enheter, funksjoner og tjenester som du kan bruke for å oppfylle ulike behov innen skytjenester. Dette kurset er spesielt rettet mot forberedelse til AZ-900-eksamen, som fører til Microsoft-sertifiseringen "Microsoft Certified Fundamentals". Målet med kurset er å gi deg tilstrekkelig kunnskap og forberedelse til å bestå denne eksamenen med suksess. Kurset vil dekke følgende emner: Kapittel 1: Introduksjon Kapittel 2: Tjenester Kapittel 3: Verktøy Kapittel 4: Sikkerhet Kapittel 5: Styring Kapittel 6: Administrasjon Kapittel 7: Avslutning   Varighet: 4 timer og 32 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo 1 dag 9 900 kr
18 Aug
18 Aug
ITIL® 4 Practitioner: Relationship Management [+]
ITIL® 4 Practitioner: Relationship Management [-]
Les mer
5 dager 25 500 kr
MS-100: Microsoft 365 Identity and Services [+]
MS-100: Microsoft 365 Identity and Services [-]
Les mer
Oslo 2 dager 16 900 kr
11 Sep
11 Sep
11 Dec
UX Foundation [+]
UX Foundation [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
1 dag 9 900 kr
Jira Project Administration (Cloud) [+]
Jira Project Administration (Cloud) [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excel for Økonomer - elæringskurs [+]
Excel for Økonomer - elæringskurs [-]
Les mer
13 timer
Videregående Excel [+]
I dette kurset forutsettes at deltagerne er vante Excelbrukere, slik at de behersker grunnleggende teknikker og henger med i gjennomgangen av mer videregående funksjonalitet. Mange av temaene vil være de samme som i det grunnleggende kurset, men vil kunne bli gjennomgått i mer avanserte eksempler. Sjekk av grunnleggende ting i formelbygging og formelkopiering Modellbyggingsteknikker – gjennomgående summering og tabulering av data med funksjonen INDIREKTE Tall og tekst – identifikasjon og korreksjon av «tekst»-tall Importutfordringer – rydde og ordne importerte datasett Datalister – bearbeiding og forberedelse til analyse Pivottabell – hvorfor og hvordan Power Pivot – en introduksjon Sentrale funksjoner: HVIS, HVISFEIL, FINN.RAD, m. fl. Grafisk fremstilling av numeriske data Arbeide med tid (dager, klokkeslett, etc.) i Excel Betingede sammendrag med bl.a. SUMMER.HVIS.SETT, matriseformler, etc. Makroer – en introduksjon [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
5 dager 30 000 kr
Microsoft 365 Enterprise Administrator Expert (MCE) - Boot Camp [+]
Microsoft 365 Enterprise Administrator Expert (MCE) - Boot Camp [-]
Les mer
Virtuelt klasserom 3 dager 18 000 kr
The Python Programming 2 course comprises sessions dealing with advanced object orientation,iterators and generators,comprehensions,decorators,multithreading,functional p... [+]
COURSE OVERVIEW   The delegate will learn how to exploit advanced features of the Python language to build complex and efficient applications. Exercises and examples are used throughout the course to give practical hands-on experience with the techniques covered. TARGET AUDIENCE The Python Programming 2 course is designed for existing Python developers who have a good grounding in the basics and want to exploit some of the advanced features of the language. For the delegate for whom Python is their first programming language,we recommend taking the Python Programming 1 course first,then taking some time to practice the skills gained,before returning to take the Python Programming 2 course.   COURSE OBJECTIVES This course aims to provide the delegate with the knowledge to be able to interpret,write,and troubleshoot complex Python applications exploiting inheritance and polymorphism,mixins,composition and aggregation,iterators,generators,decorators,comprehension,concurrency,functional programming,and RESTful web services. COURSE CONTENT DAY 1 COURSE INTRODUCTION Administration and Course Materials Course Structure and Agenda Delegate and Trainer Introductions SESSION 1: ADVANCED OBJECT ORIENTATION The self Keyword Constructors and Destructors Encapsulation Inheritance Introspection with __dict__,__name__,__module__,__bases__ The hasattr(obj,attr),dir(obj),help(obj) functions Polymorphism Abstract Classes Multiple Inheritance and Mixins Composition and Aggregation Static Members SESSION 2: ITERATORS & GENERATORS Iterables Iterators Custom Iterators Generators Yield vs. Return SESSION 3: COMPREHENSIONS List Comprehension Set Comprehension The zip Function Dictionary Comprehension DAY 2 SESSION 4: DECORATORS Decorators Decorator Functions Decorator Annotations Decorator Use Cases Labs SESSION 5: FUNCTIONAL PROGRAMMING Functional Programming Lambdas Immutability Mapping Filtering Reducing SESSION 6: MULTITHREADING Threads Multithreading Thread Construction Thread Execution Thread Sleep Joins Data Sharing Synchronisation Multithreading vs. Multiprocessing DAY 3 SESSION 7: WEB SERVICES RESTful Web Services JSON Data CRUD and HTTP RESTful Clients RESTful APIs SESSION 8: UNIT TESTING Unit Testing Terminology Test Classes Test Fixtures Test Cases Assertions Test Runners   FOLLOW ON COURSES Data Analysis Python [-]
Les mer