IT-kurs
Østfold
Du har valgt: Fredrikstad
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Fredrikstad ) i IT-kurs
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Oslo 5 dager 32 500 kr
22 Sep
22 Sep
Oracle Database 23ai: Administration Workshop [+]
Oracle Database: Administration Workshop [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til Windows Phone, live tiles og panorama view, installasjon av nødvendig programvare, Hello World, deployment av applikasjoner på telefonen eller emulator, ... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende erfaring med objektorientert programmering er en fordel. Innleveringer: Øvinger: 6 av 8 må være godkjent. Større eller mindre øvinger tilsvarende 8 øvinger hvor 6 må være godkjent før endelig karakter settes. Personlig veileder: ja Vurderingsform: Karakter settes basert på et prosjekt som gjennomføres individuelt. Prosjektet gjennomføres mot slutten av emnet. Ansvarlig: Atle Nes         Læremål: KUNNSKAPERKandidaten:- kjenner til grensesnittet og egenskaper ved Windows Phone- kjenner til ulike programmeringsspråk som kan benyttes ved utvikling av applikasjoner på Windows Phone- kan forklare hvordan en Windows Phone applikasjon publiseres på Marketplace FERDIGHETER:Kandidaten:- kan installere nødvendig programvare på egen datamaskin for å komme i gang med applikasjonsutvikling for Windows Phone- kan utvikle enkle mobilapplikasjoner basert på C# eller VB og XAML (Silverlight)- kan deploye en Windows Phone applikasjon til egen telefon eller til emulator- kan bestemme layout og orientering- kan legge til ulike kontrollere og håndtere hendelser- kan legge til multimedia-elementer- kan utnytte telefonens egenskaper ved hjelp av Windows Phone SDK GENERELL KOMPETANSE:Studenten får en grunnleggende innføring i utvikling av applikasjoner for mobiltelefoner med Windows Phone Innhold:Introduksjon til Windows Phone, live tiles og panorama view, installasjon av nødvendig programvare, Hello World, deployment av applikasjoner på telefonen eller emulator, XAML, layout og orientering, touch og navigasjon, ulike kontrollere og hendelser, multimedia (bilder, lyd og video), Windows Phone SDK, utnyttelse av telefonens egenskaper (GPS, akselerometer, kontaktliste, kamera), publisering av applikasjoner på Marketplace.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Applikasjonsutvikling for Windows Phone 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.   [-]
Les mer
4 dager 45 000 kr
11 Aug
01 Sep
29 Sep
DO180: Red Hat OpenShift Administration I: Operating a Production Cluster [+]
DO180: Red Hat OpenShift Administration I: Operating a Production Cluster [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
In this course, the students will implement various data platform technologies into solutions that are in line with business and technical requirements including on-premi... [+]
The students will also explore how to implement data security including authentication, authorization, data policies and standards. They will also define and implement data solution monitoring for both the data storage and data processing activities. Finally, they will manage and troubleshoot Azure data solutions which includes the optimization and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Azure for the Data Engineer -Explain the evolving world of data-Survey the services in the Azure Data Platform-Identify the tasks that are performed by a Data Engineer-Describe the use cases for the cloud in a Case Study Module 2: Working with Data Storage. -Choose a data storage approach in Azure-Create an Azure Storage Account-Explain Azure Data Lake storage-Upload data into Azure Data Lake Module 3: Enabling Team Based Data Science with Azure Databricks. -Explain Azure Databricks and Machine Learning Platforms-Describe the Team Data Science Process-Provision Azure Databricks and workspaces-Perform data preparation tasks Module 4: Building Globally Distributed Databases with Cosmos DB. -Create an Azure Cosmos DB database built to scale-Insert and query data in your Azure Cosmos DB database-Provision a .NET Core app for Cosmos DB in Visual Studio Code-Distribute your data globally with Azure Cosmos DB Module 5: Working with Relational Data Stores in the Cloud. -SQL Database and SQL Data Warehouse-Provision an Azure SQL database to store data-Provision and load data into Azure SQL Data Warehouse Module 6: Performing Real-Time Analytics with Stream Analytics. Module 7: Orchestrating Data Movement with Azure Data Factory. -Explain how Azure Data Factory works-Create Linked Services and datasets-Create pipelines and activities-Azure Data Factory pipeline execution and triggers Module 8: Securing Azure Data Platforms. -Configuring Network Security-Configuring Authentication-Configuring Authorization-Auditing Security Module 9: Monitoring and Troubleshooting Data Storage and Processing. -Data Engineering troubleshooting approach-Azure Monitoring Capabilities-Troubleshoot common data issues-Troubleshoot common data processing issues Module 10: Integrating and Optimizing Data Platforms. -Integrating data platforms-Optimizing data stores-Optimize streaming data-Manage disaster recovery [-]
Les mer
Virtuelt klasserom 5 dager 38 000 kr
(ISC)² and the Cloud Security Alliance (CSA) developed the Certified Cloud Security Professional (CCSP) credential to ensure that cloud security professionals have the re... [+]
COURSE OVERVIEW A CCSP applies information security expertise to a cloud computing environment and demonstrates competence in cloud security architecture, design, operations, and service orchestration. This professional competence is measured against a globally recognized body of knowledge. The CCSP is a standalone credential that complements and builds upon existing credentials and educational programs, including (ISC)²’s Certified Information Systems Security Professional (CISSP) and CSA’s Certificate of Cloud Security Knowledge (CCSK). As an (ISC)2 Official Training Provider, we use courseware developed by (ISC)² –creator of the CCSP CBK –to ensure your training is relevant and up-to-date. Our instructors are verified security experts who hold the CCSP and have completed intensive training to teach (ISC)² content. Please Note: An exam voucher is included with this course   TARGET AUDIENCE Experienced cybersecurity and IT/ICT professionals who are involved in transitioning to and maintaining cloud-basedsolutions and services. Roles include:• Cloud Architect• Chief Information Security Officer (CISO)• Chief Information Officer (CIO)• Chief Technology Officer (CTO)• Engineer/Developer/Manager• DevOps• Enterprise Architect• IT Contract Negotiator• IT Risk and Compliance Manager• Security Administrator• Security Analyst• Security Architect• Security Consultant• Security Engineer• Security Manager• Systems Architect• Systems Engineer• SecOps   COURSE OBJECTIVES After completing this course you should be able to:   Describe the physical and virtual components of and identify the principle technologies of cloud based systems Define the roles and responsibilities of customers, providers, partners, brokers and the various technical professionals that support cloud computing environments Identify and explain the five characteristics required to satisfy the NIST definition of cloud computing Differentiate between various as a Service delivery models and frameworks that are incorporated into the cloud computing reference architecture Discuss strategies for safeguarding data, classifying data, ensuring privacy, assuring compliance with regulatory agencies and working with authorities during legal investigations Contrast between forensic analysis in corporate data center and cloud computing environments Evaluate and implement the security controls necessary to ensure confidentiality, integrity and availability in cloud computing Identify and explain the six phases of the data lifecycle Explain strategies for protecting data at rest and data in motion Describe the role of encryption in protecting data and specific strategies for key management Compare a variety of cloud-based business continuity / disaster recovery strategies and select an appropriate solution to specific business requirements Contrast security aspects of Software Development Lifecycle (SDLC) in standard data center and cloud computing environments Describe how federated identity and access management solutions mitigate risks in cloud computing systems Conduct gap analysis between baseline and industry-standard best practices Develop Service Level Agreements (SLAs) for cloud computing environments Conduct risk assessments of existing and proposed cloud-based environments State the professional and ethical standards of (ISC)² and the Certified Cloud Security Professional COURSE CONTENT   Domain 1. Cloud Concepts, Architecture and Design Domain 2. Cloud Data Security Domain 3. Cloud Platform & Infrastructure Security Domain 4. Cloud Application Security Domain 5. Cloud Security Operations Domain 6. Legal, Risk and Compliance TEST CERTIFICATION Recommended as preparation for the following exam: (ISC)² - Certified Cloud Security Professional  Gaining this accreditation is not just about passing the exam, there are a number of other criterias that need to be met including 5  years of cumulative, paid work experience in  information technology, of which 3 years must be in information security and 1 year in 1 or more of the 6 domains of the CCSP CBK. Earning CSA’s CCSK certificate can be substituted for 1 year of experience in 1 or more of the 6 domains of the CCSP CBK. Earning (ISC)²’s CISSP credential can be substituted for the entire CCSP experience requirement. Full details can be found at https://www.isc2.org/Certifications/CCSP Those without the required experience can take the exam to become an Associate of (ISC)²  . The Associate of (ISC)² will then have 6 years to earn the 5 years required experience.   [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
Successful completion of this five-day, instructor-led course should enhance the student’s understanding of configuring and managing Palo Alto Networks Next-Generation Fi... [+]
COURSE OVERVIEW The course includes hands-on experience configuring, managing, and monitoring a firewall in a lab environment TARGET AUDIENCE This course is aimed at Security Engineers, Security Administrators, Security Operations Specialists, Security Analysts, and Support Staff. COURSE OBJECTIVES After you complete this course, you will be able to: Configure and manage the essential features of Palo Alto Networks next-generation firewalls Configure and manage Security and NAT policies to enable approved traffic to and from zones Configure and manage Threat Prevention strategies to block traffic from known and unknown IP addresses, domains, and URLs Monitor network traffic using the interactive web interface and firewall reports COURSE CONTENT 1 - Palo Alto Networks Portfolio and Architecture 2 - Configuring Initial Firewall Settings 3 - Managing Firewall Configurations 4 - Managing Firewall Administrator Accounts 5 - Connecting the Firewall to Production Networks with Security Zones 6 - Creating and Managing Security Policy Rules 7 - Creating and Managing NAT Policy Rules 8 - Controlling Application Usage with App-ID 9 - Blocking Known Threats Using Security Profiles 10 - Blocking Inappropriate Web Traffic with URL Filtering 11 - Blocking Unknown Threats with Wildfire 12 - Controlling Access to Network Resources with User-ID 13 - Using Decryption to Block Threats in Encrypted Traffic 14 - Locating Valuable Information Using Logs and Reports 15 - What's Next in Your Training and Certification Journey Supplemental Materials Securing Endpoints with GlobalProtect Providing Firewall Redundancy with High Availability Connecting Remotes Sites using VPNs Blocking Common Attacks Using Zone Protection   FURTHER INFORMATION Level: Introductory Duration: 5 days Format: Lecture and hands-on labs Platform support: Palo Alto Networks next-generation firewalls running PAN-OS® operating system version 11.0     [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
The Implementing Cisco Enterprise Wireless Networks course gives you the knowledge and skills needed to secure wireless network infrastructure and troubleshoot any relate... [+]
COURSE OVERVIEW You’ll learn how to implement and secure a wireless network infrastructure and use Cisco Identity Service Engine (ISE), Cisco Prime Infrastructure (PI), and Cisco Connect Mobile Experience to monitor and troubleshoot network issues.   The course provides hands-on labs to reinforce concepts including deploying Cisco Prime Infrastructure Release 3.5, Cisco Catalyst 9800 Wireless Controller Release IOS XE Gibraltar 16.10, Cisco Digital Network Architecture (DNA) Center Release 1.2.8, Cisco CMX Release 10.5, Cisco MSE Release 8.0 features and Cisco Identity Services Engine (ISE) Release 2.4.   This course also helps you prepare to take the Implementing Cisco Enterprise Wireless Networks (300-430 ENWLSI) exam, which is part of the new CCNP Enterprise certification. Passing the exam will also provide you with the Cisco Certified Specialist - Enterprise Wireless Implementation certification.   TARGET AUDIENCE Individuals needing to understand how to implement, secure and troubleshoot a Cisco Enterprise Wireless Network.   COURSE OBJECTIVES After completing this course you should be able to: Implement network settings to provide a secure wireless network infrastructure Troubleshoot security issues as it relates to the wireless network infrastructure Implement a secure wireless client and troubleshoot wireless client connectivity issues Implement and troubleshoot QoS in wireless networks Implement and troubleshoot advanced capabilities in wireless network services   COURSE CONTENT Securing and Troubleshooting the Wireless Network Infrastructure Implement Secure Access to the WLCs and Access Points Configure the Network for Access Point 802.1X Authentication Use Cisco DNA Center for Controller and AP Auto Install Implement Cisco Prime Infrastructure Define Network Troubleshooting Techniques Troubleshoot Access Point Join Issues Monitor the Wireless Network Implementing and Troubleshooting Secure Client Connectivity Configure the Cisco WLC for Wireless Client 802.1x Authentication Configure the Wireless Client for 802.1X Authentication Configure a Wireless LAN for FlexConnect Implement Guest Services in the Wireless Network Configure the Cisco WLC for Centralized Web Authentication Configure Central Web Authentication on Cisco ISE Implement BYOD Implement Location-Aware Guest Services Troubleshoot Client Connectivity Describe Issues that Affect Client Performance Monitor Wireless Clients Implementing and Troubleshooting QoS in Wireless Networks Implement QoS in the Wireless Network Configure the Cisco WLC to Support Voice Traffic Optimize Wireless Utilization on the Cisco WLC Implement Cisco AVC in the Wireless Network Implement Multicast Services Implement mDNS Service Implement Cisco Media Stream Troubleshoot QoS Issues in the Wireless Network Troublehoot mDNS Issues Troubleshoot Media Stream Issues Implementing and Troubleshooting Advanced Wireless Network Services Implement Base Location Services on Cisco Prime Infrastructure Implement Hyperlocation in the Wireless Network Implement Detect and Locate Services on Cisco CMX Implement Analytics on Cisco CMX Implement Presence Services on Cisco CMX Monitor and Locate Rogue Devices with Cisco Prime Infrastructure and Cisco CMX Monitor and Detect Wireless Clients with Cisco CMX and Cisco DNA Center Run Analytics on Wireless Clients Troubleshoot Location Accuracy with Cisco Hyperlocation Monitor and Manage RF Interferers on the Cisco WLC Monitor and Manager RF Interferers on Cisco Prime Infrastructure and Cisco CMX Labs Lab Familiarization (Base Learning Lab) Configure Secure Management Access for WLCs and APs Add Network Devices and External Resources to Cisco Prime Infrastructure Capture a Successful AP Authentication Implement AAA Services for Central Mode WLANs Implement AAA Services for FlexConnect Mode WLANs Configure Guest Services in the Wireless Network Configure BYOD in the Wireless Network Capture a Successful Client Authentications Configure QoS in the Wireless Network for Voice and Video Services Configure Cisco AVC in the Wireless Network Capture Successful QoS Traffic Marking in the Wireless Network Configure Detect and Locate Services on the Cisco CMX Identify Wireless Clients and Security Threats [-]
Les mer
Oslo 5 dager 27 500 kr
01 Sep
01 Sep
20 Oct
MS-102: Microsoft 365 Administrator Essentials [+]
MS-102: Microsoft 365 Administrator [-]
Les mer
3 dager 22 500 kr
Oracle BI Publisher: Fundamentals [+]
Oracle BI Publisher: Fundamentals [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
4 dager 22 500 kr
MB-220: Dynamics 365 Customer Insights - Journeys [+]
MB-220: Dynamics 365 Customer Insights - Journeys [-]
Les mer
Oslo 1 dag 9 500 kr
20 Aug
20 Aug
26 Sep
AI-900: Microsoft Azure AI Fundamentals [+]
AI-900: Microsoft Azure AI Fundamentals [-]
Les mer
Bedriftsintern 2 dager 8 500 kr
Bli funksjonell og skriv konsis, deklarativ kode med Javas Stream API. Workshopen retter seg primært mot Java-utviklere som vil lære mer om funksjonell programmering, lam... [+]
Dette kurset tilbys som bedriftsinternt kurs   Workshopen består av et minimum med teori og et maksimum av praktiske øvelser hvor vi lager streams av  Arrays, List, Set, Map og Files - filtrerer, mapper til nye objekter, utfører aggregeringer og konverterer tilbake til nye collections mm.   Workshopen vil dekke bl.a. Sette opp en stream, med Stream.of(), IntStream.of() og DoubleStream.of() Konvertere et Array til en stream med Arrays.stream() Konvertere en collection av typen List, Set eller Map til en stream med stream() Filtrere ut verdier med filter() Mappe til nye objekter med map() og flatMap() Sortere med sorted() og ulike typer Comparators Aggregere med reduce() og collect() Behandle hvert element med forEach() og forEachOrdered() Gruppere og telle opp forekomster i hver gruppe med collect() Konvertere tilbake til en collection med collect() Konvertere til et objekt med get() Begrense reultatet med limit() Hente enkel statistikk (min, max, average, sum) med reduce() og collect() og bl.a. summarizingInt() Bruke :: til metodereferanser Lese en fil inn i en stream med Files.lines() Behandle hvert element med forEach() og forEachOrdered() Workshopen holdes på norsk og går over 2 dager, fra 10.00-14.00, for tiden online, med dedikert lærer og Microsoft Teams som kommunikasjonsplattform.   [-]
Les mer