IT-kurs
Rogaland
Du har valgt: Gjesdal
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Gjesdal ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Oslo Bergen 4 dager 25 900 kr
25 Nov
25 Nov
16 Dec
Advanced Python Development [+]
Advanced Python Development [-]
Les mer
1 dag 9 900 kr
Jira Project Administration (Cloud) [+]
Jira Project Administration (Cloud) [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
Nettstudie 1 semester 4 980 kr
På forespørsel
Adresser og pekere, pekere og tabeller, det frie lageret, operator overloading, konstruktører og destruktører, templates, introduksjon til STL, RTTI og exceptions. [+]
Studieår: 2013-2014   Gjennomføring: Høst Antall studiepoeng: 5.0 Forutsetninger: Programmeringserfaring i et eller flere objektorienterte programmeringsspråk Innleveringer: 8 bestemte øvinger kreves godkjent for å få gå opp til eksamen. Personlig veileder: ja Vurderingsform: 4 timer skriftlig eksamen. Ansvarlig: Else Lervik Eksamensdato: 05.12.13         Læremål: KUNNSKAPERKandidaten:- kan definere begrepene pekere og referanser og forholdet mellom pekere og tabeller- kan redegjøre for hva konstruktører og destruktører er, og kan forklare når det er nødvendig å lage dem.- kan gjøre rede for «overloading» av operatorer- kan forklare begrepet «templates» og hvordan det brukes- kan forklare behovet for Standard Template Library og hva det inneholder- kan forklare bruken av RTTI og Exceptions FERDIGHETER:Kandidaten:- kan lage programmer i C++ som demonstrerer bruk av pekere, «overloading», templates, RTTI, exceptions og elementer fra Standard Template Library- kan lage programmer i C++ som bruker pekere og det frie lageret på en forsvarlig måte og med nødvendig opprydding GENERELL KOMPETANSE:Kandidaten:- er opptatt av at som profesjonell yrkesutøver skal man lage programmer som skal lette arbeidet for andre yrkesutøvere eller generelt være til nytte for folk og samfunn Innhold:Adresser og pekere, pekere og tabeller, det frie lageret, operator overloading, konstruktører og destruktører, templates, introduksjon til STL, RTTI og exceptions.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Dette faget går: Høst 2013    Fag C++ for programmerere 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Oslo Trondheim Og 1 annet sted 5 dager 34 000 kr
18 Aug
25 Aug
25 Aug
TOGAF® EA Course Combined [+]
TOGAF® EA Course Combined [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, L... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende objektorientert programmering i for eksempel Java eller C++ Innleveringer: Øvinger: 8 av 11 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 4 timer. Case-beskrivelser etc. legges ut i ItsLearning 24 timer før. (NB! Eksamensform kan bli endret under forutsetning av at ny teknologi gjør det mulig å arrangere eksamen elektronisk.) Ansvarlig: Grethe Sandstrak Eksamensdato: 05.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal kandidaten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan gjøre rede for sentrale begreper innen objektorientering- kan konstruere et objektorientert C#. NET-program ut fra en gitt problemstilling- kan finne fram, sette seg inn i og anvende dokumentasjon om .NET Framework library- kjenner til ulike GUI-komponenter og hvordan de brukes i C#-programmer FERDIGHETER:Kandidaten kan:- sette opp programmiljø for å utvikle og kjøre C#. NET applikasjoner på egen pc- kan anvende klasser fra .NET Framework library- lage C#.NET program* med fordeling av oppgaver mellom objekter og der arv og polymorfi benyttes* med grafiske brukergrensesnitt* som kommuniserer med en database via SQL* med LINQ, delegater, templates GENERELL KOMPETANSEKandidaten kan:- kommunisere om objektorientert programmering og databaser med relevant begrepsapparat Innhold:NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, LINQ, Templates, Collections.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag C#.NET 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 26 500 kr
29 Sep
29 Sep
27 Oct
AZ-204: Developing Solutions for Microsoft Azure [+]
AZ-204: Developing Solutions for Microsoft Azure [-]
Les mer
Nettkurs 10 timer 549 kr
I dette kurset lærer du CSS fra scratch til viderekommen. Kurset dekker alt du hadde lært om CSS i løpet av en moderne teknologiutdanning, og når du er ferdig med kurset ... [+]
Bli en mester i Cascading Style Sheets (CSS) med dette omfattende kurset fra Espen Faugstad hos Utdannet.no. Kurset "CSS: Komplett" tar deg fra grunnleggende til avanserte konsepter i CSS, som er avgjørende for moderne webutvikling. Uansett om du er nybegynner eller har litt forhåndskunnskap, vil kurset gi deg ferdighetene til å tilpasse eksisterende CSS-kode eller skrive din egen fra bunnen av. Utforsk hvordan du kan bruke typografi, farger, og former for å skape engasjerende og estetisk tiltalende brukeropplevelser. Lær om bruk av selektorer, boksmodellen, tekststilsetting, og skap moderne weboppsett med Flexbox og Grid. Kurset vil også guide deg gjennom å lage din egen portfolio-nettside, en praktisk anvendelse av dine nyinnlærte CSS-ferdigheter. Ved kursets slutt vil du ha en grundig forståelse av CSS og evnen til å anvende det effektivt i dine webprosjekter. Dette er Skandinavias mest omfattende kurs i CSS, og gir deg kompetansen til å skape attraktive muligheter i webutviklingsverdenen.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Kjernekompetanse Kapittel 3: Boksmodellen Kapittel 4: Tekst Kapittel 5: Utseende Kapittel 6: Float Kapittel 7: Positioning Kapittel 8: Flexbox Kapittel 9: Grid Kapittel 10: Responsiv design Kapittel 11: Resterende Kapittel 12: Avslutning   Varighet: 9 timer og 52 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettkurs 1 time 549 kr
En pivottabell er et kraftig verktøy i Microsoft Excel som gjør at du kan beregne, summere og analysere store mengder data på en rask og effektiv måte. En pivottabell kan... [+]
En pivottabell er et kraftig verktøy i Microsoft Excel som gjør at du kan beregne, summere og analysere store mengder data på en rask og effektiv måte. En pivottabell kan brukes til å analysere numeriske data og til å besvare uventede spørsmål om dataen. Kort fortalt, en pivottabell hjelper deg med å ta informerte beslutninger basert på funnene i dataene dine. I dette kurset, ledet av Espen Faugstad, vil du lære alt du trenger å vite for å jobbe med pivottabeller i Microsoft Excel. Kurset vil dekke hva en pivottabell er, hvordan du klargjør data, organiserer data, formaterer data, presenterer data, og mye mer. For å ta dette kurset, bør du ha grunnleggende forståelse av Microsoft Excel. Kurset er strukturert i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Grunnleggende Kapittel 3: Viderekommen Kapittel 4: Avslutning Etter å ha fullført kurset vil du være i stand til å bruke pivottabeller til å analysere data, trekke innsikter og ta informerte beslutninger basert på dataene i Excel.   Varighet: 1 time   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo 4 dager 23 900 kr
Angular 14 Development [+]
Angular 14 Development [-]
Les mer
Nettkurs 1 time 549 kr
Adobe Bridge er et program som gjør det enkelt å importere og organisere digitale bilder. Programmet er en del av Creative Cloud-pakken som du kan abonnere på, og verktøy... [+]
Utforsk Adobe Bridge til fulle med kurset "Bridge: Komplett" ledet av Espen Faugstad hos Utdannet.no. Adobe Bridge er et kraftig verktøy for å importere, organisere og vise digitale bilder, og er en viktig del av Creative Cloud-pakken. Dette kurset er designet for alle som ønsker å lære Adobe Bridge fra grunnen av, og ingen forkunnskaper er nødvendig. Du vil lære hvordan du effektivt importerer og organiserer bilder, rangerer og presenterer dem. Kurset vil gi deg en dyp forståelse av hvordan forskjellige paneler i Bridge, som Content-panelet, Filter-panelet, Collections-panelet, og Metadata-panelet, fungerer i praksis. Gjennom kurset vil du få praktisk erfaring med å bruke Bridge for å forbedre din arbeidsflyt og bildehåndtering. Ved slutten av kurset vil du ha oppnådd en omfattende forståelse av Adobe Bridge, noe som gjør deg i stand til å bruke programmet effektivt, enten du jobber alene eller sammen med andre Adobe-programmer som Photoshop.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Grunnleggende Kapittel 3: Viderekommen Kapittel 4: Avslutning   Varighet: 1 time   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer