IT-kurs
Du har valgt: Graubünden
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Graubünden ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 2 timer 549 kr
Visste du at det er mulig å lage et interaktivt PDF-dokument i Adobe InDesign? Det er faktisk ikke så vanskelig når du først kommer i gang. Et interaktivt PDF-dokument ka... [+]
Visste du at det er fullt mulig å lage et interaktivt PDF-dokument i Adobe InDesign? Faktisk er det ikke så vanskelig når du først har forstått hvordan det fungerer. Et interaktivt PDF-dokument kan inkludere elementer som bokmerker, destinasjoner, linker, knapper, tekstfelt, kombinasjonsbokser, avkrysningsbokser, radioknapper, og mye mer. I dette kurset vil Espen Faugstad guide deg gjennom prosessen med å lage et interaktivt PDF-dokument ved hjelp av Adobe InDesign CC 2020. Du vil lære å opprette bokmerker, destinasjoner, linker og knapper. I tillegg vil du lære å utvikle utfyllingsskjemaer som inkluderer tekstfelt, kombinasjonsbokser, avkrysningsbokser, radioknapper og mer. Til slutt vil du bli veiledet gjennom eksporteringen av prosjektet som en PDF-fil. Dette kurset er delt inn i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Interaktivitet Kapittel 3: Skjema Kapittel 4: Eksportere Kapittel 5: Avslutning Gjennom kurset vil du få de nødvendige ferdighetene for å skape interaktive PDF-dokumenter som kan være nyttige i en rekke sammenhenger, inkludert presentasjoner, rapporter, og mer.   Varighet: 1 time og 37 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
4 dager 25 000 kr
AI-102 Designing and Implementing an Azure AI Solution is intended for software developers wanting to build AI infused applications that leverage Azure Cognitive Services... [+]
TARGET AUDIENCE Software engineers concerned with building, managing and deploying AI solutions that leverage Azure Cognitive Services, Azure Cognitive Search, and Microsoft Bot Framework. They are familiar with C#, Python, or JavaScript and have knowledge on using REST-based APIs to build computer vision, language analysis, knowledge mining, intelligent search, and conversational AI solutions on Azure. COURSE OBJECTIVES After completing this course you should be able to: Describe considerations for creating AI-enabled applications Identify Azure services for AI application development Provision and consume cognitive services in Azure Manage cognitive services security Monitor cognitive services Use a cognitive services container Use the Text Analytics cognitive service to analyze text Use the Translator cognitive service to translate text Use the Speech cognitive service to recognize and synthesize speech Use the Speech cognitive service to translate speech Create a Language Understanding app Create a client application for Language Understanding Integrate Language Understanding and Speech Use QnA Maker to create a knowledge base Use a QnA knowledge base in an app or bot Use the Bot Framework SDK to create a bot Use the Bot Framework Composer to create a bot Use the Computer Vision service to analyze images Use Video Indexer to analyze videos Use the Custom Vision service to implement image classification Use the Custom Vision service to implement object detection Detect faces with the Computer Vision service Detect, analyze, and recognize faces with the Face service Use the Computer Vision service to read text in images and documents Use the Form Recognizer service to extract data from digital forms Create an intelligent search solution with Azure Cognitive Search Implement a custom skill in an Azure Cognitive Search enrichment pipeline Use Azure Cognitive Search to create a knowledge store   COURSE CONTENT Module 1: Introduction to AI on Azure Artificial Intelligence (AI) is increasingly at the core of modern apps and services. In this module, you'll learn about some common AI capabilities that you can leverage in your apps, and how those capabilities are implemented in Microsoft Azure. You'll also learn about some considerations for designing and implementing AI solutions responsibly. Introduction to Artificial Intelligence Artificial Intelligence in Azure Module 2: Developing AI Apps with Cognitive Services Cognitive Services are the core building blocks for integrating AI capabilities into your apps. In this module, you'll learn how to provision, secure, monitor, and deploy cognitive services. Getting Started with Cognitive Services Using Cognitive Services for Enterprise Applications Lab: Get Started with Cognitive Services Lab: Get Started with Cognitive Services Lab: Monitor Cognitive Services Lab: Use a Cognitive Services Container Module 3: Getting Started with Natural Language Processing  Natural Language processing (NLP) is a branch of artificial intelligence that deals with extracting insights from written or spoken language. In this module, you'll learn how to use cognitive services to analyze and translate text. Analyzing Text Translating Text Lab: Analyze Text Lab: Translate Text Module 4: Building Speech-Enabled Applications Many modern apps and services accept spoken input and can respond by synthesizing text. In this module, you'll continue your exploration of natural language processing capabilities by learning how to build speech-enabled applications. Speech Recognition and Synthesis Speech Translation Lab: Recognize and Synthesize Speech Lab: Translate Speech Module 5: Creating Language Understanding Solutions To build an application that can intelligently understand and respond to natural language input, you must define and train a model for language understanding. In this module, you'll learn how to use the Language Understanding service to create an app that can identify user intent from natural language input. Creating a Language Understanding App Publishing and Using a Language Understanding App Using Language Understanding with Speech Lab: Create a Language Understanding App Lab: Create a Language Understanding Client Application Use the Speech and Language Understanding Services Module 6: Building a QnA Solution One of the most common kinds of interaction between users and AI software agents is for users to submit questions in natural language, and for the AI agent to respond intelligently with an appropriate answer. In this module, you'll explore how the QnA Maker service enables the development of this kind of solution. Creating a QnA Knowledge Base Publishing and Using a QnA Knowledge Base Lab: Create a QnA Solution Module 7: Conversational AI and the Azure Bot Service Bots are the basis for an increasingly common kind of AI application in which users engage in conversations with AI agents, often as they would with a human agent. In this module, you'll explore the Microsoft Bot Framework and the Azure Bot Service, which together provide a platform for creating and delivering conversational experiences. Bot Basics Implementing a Conversational Bot Lab: Create a Bot with the Bot Framework SDK Lab: Create a Bot with a Bot Freamwork Composer Module 8: Getting Started with Computer Vision Computer vision is an area of artificial intelligence in which software applications interpret visual input from images or video. In this module, you'll start your exploration of computer vision by learning how to use cognitive services to analyze images and video. Analyzing Images Analyzing Videos Lab: Analyse Images with Computer Vision Lab: Analyze Images with Video Indexer Module 9: Developing Custom Vision Solutions While there are many scenarios where pre-defined general computer vision capabilities can be useful, sometimes you need to train a custom model with your own visual data. In this module, you'll explore the Custom Vision service, and how to use it to create custom image classification and object detection models. Image Classification Object Detection Lab: Classify Images with Custom Vision Lab: Detect Objects in Images with Custom Vision Module 10: Detecting, Analyzing, and Recognizing Faces Facial detection, analysis, and recognition are common computer vision scenarios. In this module, you'll explore the user of cognitive services to identify human faces. Detecting Faces with the Computer Vision Service Using the Face Service Lab:Destect, Analyze and Recognize Faces Module 11: Reading Text in Images and Documents Optical character recognition (OCR) is another common computer vision scenario, in which software extracts text from images or documents. In this module, you'll explore cognitive services that can be used to detect and read text in images, documents, and forms. Reading text with the Computer Vision Service Extracting Information from Forms with the Form Recognizer service Lab: Read Text in IMages Lab: Extract Data from Forms Module 12: Creating a Knowledge Mining Solution Ultimately, many AI scenarios involve intelligently searching for information based on user queries. AI-powered knowledge mining is an increasingly important way to build intelligent search solutions that use AI to extract insights from large repositories of digital data and enable users to find and analyze those insights. Implementing an Intelligent Search Solution Developing Custom Skills for an Enrichment Pipeline Creating a Knowledge Store Lab: Create and Azure Cognitive Search Solution Create a Custom Skill for Azure Cognitive Search Create a Knowledge Store with Azure Cognitive Search   TEST CERTIFICATION Recommended as preparation for the following exams: AI-102 - Designing and Implementing a Microsoft Azure AI Solution - Part of the requirements for the Microsoft Certified Azure AI Engineer Associate Certification.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører [-]
Les mer
Oslo Trondheim Og 1 annet sted 5 dager 34 000 kr
18 Aug
25 Aug
25 Aug
TOGAF® EA Course Combined [+]
TOGAF® EA Course Combined [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Innføring i datamodellering med EER og UML-notasjon. Design av relasjonsdatabase inkl. bruk av nøkler, referanseintegritet og enkel normalisering. Databasedefinisjon (DDL... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: IT Introduksjon eller tilsvarende. Innleveringer: Øvinger: 8 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 3 timer Ansvarlig: Tore Mallaug Eksamensdato: 09.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten skal:- kjenne sentrale begreper innen databaser og datamodellering, og kan gjøre rede for disse- forstå hvordan en relasjonsdatabase er bygd opp ved å se på relasjonene (tabellene) og tilhørende nøkler- forstå (tolke) et (E)ER-diagram modellert i fagets gjeldende notasjon, og vite hvordan dette kan oversettes til relasjonsmodellen- gjøre rede for hvordan databaser kan fungere i en klient/tjener-arkitektur. FERDIGHETER:Kandidaten skal kunne:- tegne sitt eget (E)ER-diagram for å oppnå en god databasestruktur- lage sin egen normaliserte relasjonsdatabase med nøkler og referanseintegritet, og opprette databasen i et valgt databaseverktøy (databasesystem)- utføre SQL-spørringer mot en gitt database- lage en relasjonsdatabase som støtter opp om funksjonaliteten til et gitt grafisk brukergrensesnitt GENERELL KOMPETANSEKandidaten- viser en bevisst holdning til strukturell lagring og representasjon av data i et informasjonssystem- viser en bevisst holdning til databasedesign for å unngå unødvendig dobbeltlagring av data i en database Innhold:Innføring i datamodellering med EER og UML-notasjon. Design av relasjonsdatabase inkl. bruk av nøkler, referanseintegritet og enkel normalisering. Databasedefinisjon (DDL) og datamanipulering (DML) i SQL. Bruk av et valgt databaseverktøy (MySQL), se sammenhengen mellom datamodell, databaseverktøy og applikasjon / web-grensesnitt (klient/tjener -arkitektur).Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Databaser 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
5 dager 20 000 kr
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [+]
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [-]
Les mer
Nettstudie 11 800 kr
Med utgangspunkt i automasjon i bygg lærere du I denne utdanningen lærer du om grunnleggende programmering i HTML, Python, og JavaScript, mobilapp-utvikling, samt prosjek... [+]
Koding automasjon i bygg Denne fagskole utdanningens innhold tilsvarer 5 studiepoeng og utdanning er på nettet.  Maksimalt antall studieplasser er 25. Utdanningen er praktisk tilrettelagt, slik at du kan anvende teori og kunnskap i praksis. Du vil få mulighet til å jobbe med reelle og aktuelle problemstillinger, og du vil få tilbakemelding fra erfarne fagfolk. Læremateriellet består av video, podkaster, resyme av fagstoff, artikler, forskningsrapporter, foredrag, presentasjon av fagstoff, samt quizer og annet. Læremateriellet du får tilgang til er på en LMS som er under kontinuerlig utvikling og oppdatering. Du får ett års tilgang til læremateriell, etter at utdanningen er ferdig, på Learning Management System (LMS) I denne utdanningen lærer du om: Installere Python på egen PC (Spyder): Veiledning for hvordan du installerer Python og Spyder IDE for å utvikle Python-programmer. Introduksjon til programmering i: HTML: Grunnleggende om HTML-strukturer og webutvikling. Python: Introduksjon til grunnleggende programmeringskonsepter, inkludert: Variabler og Datatyper: Opprettelse og bruk av variabler med ulike datatyper som heltall (integers), desimaltall (floats), strenger (strings), lister (lists), tupler (tuples), og dictionaries (dictionaries). Operatorer: Bruk av matematiske, sammenlignings-, og logiske operatorer for beregninger og verdikomparasjoner. Løkker: Implementering av kontrollstrukturer som if-setninger, for- og while-løkker, samt avvikshantering med try og except for å styre programflyten. Funksjoner: Definisjon og anvendelse av funksjoner for å organisere koden i moduler og forbedre lesbarheten og vedlikeholdbarheten. Input og Output: Håndtering av datainnlesning fra bruker og datavisning til skjermen. Moduler og Biblioteker: Utforsking av innebygde og tredjepartsmoduler for å utvide programmets funksjonalitet. Filstyring: Åpning, lesing, skriving, og lukking av filer. Strukturering av kode: Organisering av kode ved hjelp av funksjoner, klasser, og moduler for bedre lesbarhet og vedlikehold. JavaScript: Grunnleggende programmeringskonsepter for å utvikle interaktive webapplikasjoner. Programmere App til mobil telefon: Introduksjon til å kunne programmere Android-apps. Fra sensor til web: Utvikling av programmer fra grunnen av, fra å programmere Arduino UNO som en Modbus RTU slave til å utvikle en Modbus RTU master i Python. Konfigurasjon av egen PC som webserver (IIS) for å støtte webapplikasjoner. Integrert prosjektarbeid som involverer programmering fra sensor til web, som kombinerer hardware og software for å samle, behandle, og presentere data. Inkluderer API-er (Application Programming Interfaces) og tekniske beskrivelser. Du velger selv prosjektoppgave: Oppgaven kan for eksempel innebære å innhente data via API fra https://www.yr.no/ eller en annen nettressurs. Ved å anvende Modbus for I/O på Arduino, er det mulig å utvikle et system som både overvåker og regulerer energiforbruket ditt. Brukergrensesnittet kan være basert på web, og konfigureres på din egen datamaskin. Denne utdanningen danner et solid fundament for videre læring og anvendelse av disse konseptene i automasjon i bygg. Bedriftsinterne utdanning tilpasset din bedrift Denne utdanningen kan tilbys som en bedriftsintern utdanning. Det faglige innholdet er fastsatt, men den faglige tilnærmingen kan tilpasses den enkelte bedrifts behov og ønsker. Ta kontakt for en prat, så kan vi sammen lage et utdanningsløp som passer for deg og din bedrift. Kontaktpersoner er Hans Gunnar Hansen (tlf. 91101824) og Vidar Luth-Hanssen (tlf. 91373153) [-]
Les mer
Nettstudie 6 måneder 8 000 kr
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). [+]
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). Du får et grunnlag for videre studier, og kompetanse som gjør tegnearbeidet både utfordrende og interessant. Du lærer å bli fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger.   Studentlisens for AutoCAD og Revit Structure/Architecture er inkludert. Kurset er på norsk, men AutoCAD-programmet er på engelsk. Programvaren er gratis. Du lærer å bruke de grunnleggende kommandoene slik at du kan utføre enklere tegnearbeid. Du blir fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger. Du lærer å jobbe rasjonelt og å velge enkle løsninger. Bruk av flere lag med ulike farger gir god visualisering og bedre lesing av tegningene. Målsetting og teksting er viktig, og må utføres tydelig og på en riktig måte. Flater fylles med skravur og elementer kan lagres separat for senere bruk i andre tegninger. Kurset gir deg inngående informasjon gjennom studieveiledningen om hvordan du skal bruke de enkelte kommandoene. Det stilles krav til 100 % nøyaktighet, noe du oppnår når du jobber riktig. Du får øvelser med tegneoppgaver innen bygg, elektro, elkraft og maskin.   [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course covers three central elements of Microsoft 365 enterprise administration: Microsoft 365 tenant and service management, Office 365 management, and Microsoft 36... [+]
COURSE OVERVIEW  In Microsoft 365 tenant and service management, you will examine all the key components that must be planned for when designing your Microsoft 365 tenant. Once this planning phase is complete, you will learn how to configure your Microsoft 365 tenant, including your organizational profile, tenant subscription options, component services, user accounts and licenses, and security groups. Finally, you will learn how to manage your tenant, which includes the configuration of tenant roles and managing your tenant health and services. With your Microsoft 365 tenant now firmly in place, you will examine the key components of Office 365 management. This begins with an overview of Office 365 product functionality, including Exchange Online, SharePoint Online, Microsoft Teams, additional product resources, and device management. You will then transition to configuring Office 365, with a primary focus on configuring Office client connectivity to Office 365. Finally, you will examine how to manage Office 365 ProPlus deployments, from user-driven client installations to centralized Office 365 ProPlus deployments. You will wrap up this section by learning how to configure Office Telemetry and Microsoft Analytics. The course concludes with an in-depth examination of Microsoft 365 identity synchronization, with a focus on Azure Active Directory Connect. You will learn how to plan for and implement Azure AD Connect, how to manage synchronized identities, and how to implement password management in Microsoft 365 using multi-factor authentication and self-service password management. This section wraps up with a comprehensive look at implementing application and external access. You will learn how to add and manage applications in Azure Active Directory, including how to configure multi-tenant applications. You will then examine how to configure Azure AD Application Proxy, including how to install and register a connector and how to publish an on-premises app for remote access. Finally, you will examine how to design and manage solutions for external access. This includes licensing guidance for Azure AD B2B collaboration, creating a collaborative user, and troubleshooting a B2B collaboration. TARGET AUDIENCE This course is designed for persons who are aspiring to the Microsoft 365 Enterprise Admin role and have completed one of the Microsoft 365 role-based administrator certification paths. COURSE OBJECTIVES Designing, configuring, and managing your Microsoft 365 tenant Office 365 product functionality Configuring Office 365 Managing Office 365 ProPlus deployments Planning and implementing identity synchronization Implementing application and external access COURSE CONTENT Module 1: Designing Your Microsoft 365 Tenant Planning Microsoft 365 in your On-premises Infrastructure Planning Your Identity and Authentication Solution Planning Your Service Setup Planning Your Hybrid Enviroment Planning Your Migration to Office 365 Module 2: Configuring Your Microsoft 365 Tenant Planning  Your Microsoft 365 Experience Configuring  Your Microsoft 365 Experience Managing User Accounts and Licenses in Microsoft 365 Managing Security Groups in Microsoft 365 Implementing Your Domain Services Leveraging FastTrack and Partner Services Module 3: Lab 1 - Configuring your Microsoft 365 Tenant Exercise 1 - Set up a Microsoft 365 Trial Tenant Module 4: Managing Your Microsoft 365 Tenant Configuring Tenant Roles Managing Tenant Health and Services Module 5: Lab 2 - Managing your Microsoft 365 Tenant Exercise 1 - Manage Administration Delegation Exercise 2 - Configure Office 365 Message Encryption (OME) Exercise 3 - Monitor and Troubleshoot Office 365 Module 6: Office 365 Overview Exchange Online Overview SharePoint Online Overview Teams Overview Additional Resources Overview Device Management Overview Module 7: Lab 3 - Office 365 Overview Exercise 1 - Exchange Online Overview Exercise 2 - SharePoint Online Overview Exercise 3 - Teams Overview Module 8: Configuring  Office 365 Office 365 Client Overview Configuring Office Client Connectivity to Office 365 Module 9: Managing Office 365 ProPlus Deployments Managing User-Driven Client Installations Managing Centralized Office 365 ProPlus Deployments Configuring Office Telemetry Configuring Microsoft Analytics Module 10: Lab 4 - Managing Office 365 ProPlus installations Exercise 1 - Prepare an Office 365 ProPlus Managed Installation Exercise 2 - Manage a Centralized Office 365 ProPlus Installation Exercise 3 - Deploy and Configure Office Telemetry Components Module 11: Planning and Implementing Identity Synchronization Introduction to Identity Synchronization Planning for Azure AD Connect Implementing Azure AD Connect Managing Synchronized Identities Password Management in Microsoft 365 Module 12: Lab 5 - Implementing Identity Synchronization Exercise 1 - Set up your organization for identity synchronization Exercise 2 - Implement Identity Synchronization Module 13: Implementing Application and External Access Implementing Applications in Azure AD Configuring Azure AD App Proxy Designing Solutions for External Access TEST CERTIFICATION This course helps you to prepare for exam MS100. But as this is part of an expert certification you should already own one of the Microsoft 365 Associate certifications:  Modern Desktop Teamwork Administrator Security Administrator Messaging Administrator. [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. [+]
Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform. Learning Objectives This course teaches participants the following skills: Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform Use Cloud SQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform Employ BigQuery and Cloud Datalab to carry out interactive data analysis Train and use a neural network using TensorFlow Employ ML APIs Choose between different data processing products on the Google Cloud Platform Course Outline Module 1: Introducing Google Cloud Platform -Google Platform Fundamentals Overview-Google Cloud Platform Big Data Products Module 2: Compute and Storage Fundamentals -CPUs on demand (Compute Engine)-A global filesystem (Cloud Storage)-CloudShell-Lab: Set up an Ingest-Transform-Publish data processing pipeline Module 3: Data Analytics on the Cloud -Stepping-stones to the cloud-CloudSQL: your SQL database on the cloud-Lab: Importing data into CloudSQL and running queries-Spark on Dataproc-Lab: Machine Learning Recommendations with Spark on Dataproc Module 4: Scaling Data Analysis -Fast random access-Datalab-BigQuery-Lab: Build machine learning dataset Module 5: Machine Learning -Machine Learning with TensorFlow-Lab: Carry out ML with TensorFlow-Pre-built models for common needs-Lab: Employ ML APIs Module 6: Data Processing Architectures -Message-oriented architectures with Pub/Sub-Creating pipelines with Dataflow-Reference architecture for real-time and batch data processing Module 7: Summary -Why GCP?-Where to go from here-Additional Resources [-]
Les mer
Nettkurs 2 timer 549 kr
Har du noen gang lurt på hvordan det er å designe en avisartikkel? I dette kurset lærer du hvordan. Kurset er bygget opp som en workshop. Målet vårt er at du skal ha desi... [+]
Har du noen gang lurt på hvordan du designer en avisartikkel? Dette kurset gir deg muligheten til å lære akkurat det. Kurset er strukturert som en workshop, med målet om at du skal kunne designe din egen avisartikkel når kurset er ferdig. Du har muligheten til å følge instruktøren eller velge din egen avis- eller magasinartikkel som utgangspunkt. Kurset er utviklet av Espen Faugstad, en autorisert Photoshop-ekspert. Du vil lære å tilpasse brukergrensesnittet i Adobe InDesign, opprette et dokument, legge til grafiske elementer og tekst. I tillegg vil du få opplæring i opprettelse, organisering og formatering av elementer som bilder, bildetekster, overskrifter, ingress og mer. En grunnleggende forståelse av InDesign er nødvendig for å dra nytte av dette kurset. Kapittel 1: Introduksjon Kapittel 2: Kladd Kapittel 3: Ferdigstille Kapittel 4: Avslutning Dette kurset gir deg praktiske ferdigheter innen avisdesign ved hjelp av Adobe InDesign, og gir deg muligheten til å utforske kreativiteten din innenfor dette området. Om du er en aspirerende designer eller bare nysgjerrig på hvordan avisdesign fungerer, er dette kurset for deg.   Varighet: 1 time og 34 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer