IT-kurs
Sør-Trøndelag
Du har valgt: Hemne
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Hemne ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn about the processes and activities of the Incident Management practice, and their roles within the service value chain. [+]
Understand the purpose and key concepts of Incident Management, including its role in restoring normal service operations swiftly following disruptions.   This eLearning is: Interactive Self-paced   Device-friendly   2-3 hour content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Incident Management, Service Desk, Service Request Management, Monitoring and Event Management and Pro... [+]
Understand the purpose and key concepts of the Monitor, Support, and Fulfil practices, elucidating their importance in maintaining, supporting, and delivering IT services effectively.InteractiveOur eLearning:Self-pacedDevice-friendly12 hour contentMobile-optimised Exam:60 questionsMultiple Choice90 minutesClosed bookMinimum required score to pass: 65%  [-]
Les mer
12 måneder 12 000 kr
A combined module that covers the key concepts of 5 key ITIL practices: Change Enablement, Deployment Management, Release Management, Service Configuration Management, an... [+]
Understand the purpose and key concepts of the Plan, Implement, and Control practices, highlighting their importance in establishing, executing, and governing IT service strategies effectively. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content Mobile-optimised Practical exercises   Exam: 60 questions Multiple Choice 90 Minutes Closed book Pass Mark: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to ensure that the organisation’s suppliers and their performances are managed appropriately to support the seamless provision of quality pr... [+]
Understand the purpose and key concepts of the Supplier Management Practice, elucidating its importance in managing supplier relationships and ensuring value delivery from third-party services. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
This course teaches Network Engineers how to design, implement, and maintain Azure networking solutions. [+]
COURSE OVERVIEW  This course covers the process of designing, implementing, and managing core Azure networking infrastructure, Hybrid Networking connections, load balancing traffic, network routing, private access to Azure services, network security and monitoring. Learn how to design and implement a secure, reliable, network infrastructure in Azure and how to establish hybrid connectivity, routing, private access to Azure services, and monitoring in Azure. TARGET AUDIENCE This course is aimed at Network Engineers looking to specialize in Azure networking solutions. An Azure Network engineer designs and implements core Azure networking infrastructure, hybrid networking connections, load balance traffic, network routing, private access to Azure services, network security and monitoring. The azure network engineer will manage networking solutions for optimal performance, resiliency, scale, and security. COURSE CONTENT Module 1: Azure Virtual Networks In this module you will learn how to design and implement fundamental Azure Networking resources such as virtual networks, public and private IPs, DNS, virtual network peering, routing, and Azure Virtual NAT. Azure Virtual Networks Public IP Services Public and Private DNS Cross-VNet connectivity Virtual Network Routing Azure virtual Network NAT Lab 1: Design and implement a Virtual Network in Azure Lab 2: Configure DNS settings in Azure Lab 3: Connect Virtual Networks with Peering After completing module 1, students will be able to: Implement virtual networks Configure public IP services Configure private and public DNS zones Design and implement cross-VNET connectivity Implement virtual network routing Design and implement an Azure Virtual Network NAT   Module 2: Design and Implement Hybrid Networking In this module you will learn how to design and implement hybrid networking solutions such as Site-to-Site VPN connections, Point-to-Site VPN connections, Azure Virtual WAN and Virtual WAN hubs. Site-to-site VPN connection Point-to-Site VP connections Azure Virtual WAN Lab 4: Create and configure a local gateway Create and configure a virtual network gateway Create a Virtual WAN by using Azure Portal Design and implement a site-to-site VPN connection Design and implement a point-to-site VPN connection Design and implement authentication Design and implement Azure Virtual WAN Resources   Module 3: Design and implement Azure ExpressRoute In this module you will learn how to design and implement Azure ExpressRoute, ExpressRoute Global Reach, ExpressRoute FastPath and ExpressRoute Peering options. ExpressRoute ExpressRoute Direct ExpressRoute FastPath ExpressRoute Peering Lab 5: Create and configure ExpressRoute Design and implement Expressroute Design and implement Expressroute Direct Design and implement Expressroute FastPath   Module 4: load balancing non-HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for non-HTTP(S) traffic in Azure with Azure Load balancer and Traffic Manager. Content Delivery and Load Blancing Azure Load balancer Azure Traffic Manager Azure Monitor Network Watcher Lab 6: Create and configure a public load balancer to load balance VMs using the Azure portal Lab:7 Create a Traffic Manager Profile using the Azure portal Lab 8: Create, view, and manage metric alerts in Azure Monitor Design and implement Azure Laod Balancers Design and implement Azure Traffic Manager Monitor Networks with Azure Monitor Use Network Watcher   Module 5: Load balancing HTTP(S) traffic in Azure In this module you will learn how to design and implement load balancing solutions for HTTP(S) traffic in Azure with Azure Application gateway and Azure Front Door. Azure Application Gateway Azure Front Door Lab 9: Create a Front Door for a highly available web application using the Azure portal Lab 10: Create and Configure an Application Gateway Design and implement Azure Application Gateway Implement Azure Front Door   Module 6: Design and implement network security In this module you will learn to design and imponent network security solutions such as Azure DDoS, Azure Firewalls, Network Security Groups, and Web Application Firewall. Azure DDoS Protection Azure Firewall Network Security Groups Web Application Firewall on Azure Front Door Lab 11: Create a Virtual Network with DDoS protection plan Lab 12: Deploy and Configure Azure Firewall Lab 13: Create a Web Application Firewall policy on Azure Front Door Configure and monitor an Azure DDoS protection plan implement and manage Azure Firewall Implement network security groups Implement a web application firewall (WAF) on Azure Front Door   Module 7: Design and implement private access to Azure Services In this module you will learn to design and implement private access to Azure Services with Azure Private Link, and virtual network service endpoints. Define Azure Private Link and private endpoints Design and Configure Private Endpoints Integrate a Private Link with DNS and on-premises clients Create, configure, and provide access to Service Endpoints Configure VNET integration for App Service Lab 14: restrict network access to PaaS resources with virtual network service endpoints Lab 15: create an Azure private endpoint Define the difference between Private Link Service and private endpoints Design and configure private endpoints Explain virtual network service endpoints Design and configure access to service endpoints Integrate Private Link with DNS Integrate your App Service with Azure virtual networks   TEST CERTIFICATION This course helps to prepare for exam AZ-700 [-]
Les mer
Nettkurs 3 timer 3 120 kr
Bli kjent med Revu (Bruksområder, grensesnitt, menyer, verktøy, paneler og profiler) Grunnleggende PDF-håndtering med Revu Markeringsverktøy og ... [+]
Bli kjent med Revu (Bruksområder, grensesnitt, menyer, verktøy, paneler og profiler) Grunnleggende PDF-håndtering med Revu Markeringsverktøy og måleverktøy Innføring i Tool Chest Innføring i Markeringslisten Innføring i Studio [-]
Les mer
Virtuelt eller personlig 3 timer 12 480 kr
Vi tilbyr kurs i Revit Structure basis 1. Du vil få en en grunnleggende kjennskap til å arbeide med Revit Structure, og til prosessen i samarbeidet med en arkitekt basert... [+]
Agenda:• Introduksjon til BIM• Link av Revit-modeller• Koordinering av modeller• Utarbeidelse av generisk modell• Arbeide med eksisterende families• Håndtering av forandringer i grunnlaget• Snitt og detaljer• Skjemaer og uttrekk• Oppsetning til print [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Kurset som får deg godt i gang med Inventor [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon. Inventor grunnkurs Her er et utvalg av temaene du vil lære på kurset: Generelt Part-modellering (3D-komponenter) Samlinger Skjelettmodellering på basisnivå Tegninger i 2D Autodesk Inventor 3D CAD programvare brukes til produktdesign, rendering og simuleringer. Løsningen er viktig når smarte ideer skal bli til produksjonsklar design, og for å utvikle fremtidens produkter og tjenester. Inventor tilfører større kvalitet til utviklingsprosesser med smarte funksjoner som optimaliserer, gjør det enkelt å «se» modellen, og simulere hvordan konseptet/prototypen vil fungere i bruk.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Virtuelt eller personlig Bærum 1 dag 6 500 kr
Kurset passer for deg som har god erfaring i generell bruk av Revit og som skal prosjektere og utføre hydrauliske beregninger på sprinkleranlegg. [+]
Her er et utvalg av temaene du vil lære på kurset: Oppsett av nytt sprinklerprosjekt i Revit Prosjektering av sprinkleranlegg Behandling av rørtyper, systemer etc Lage egne produkter for sprinklerhoder og andre produkter Hydrauliske beregninger IFC-eksport Oppsett av tegninger [-]
Les mer
Oslo 4 dager 23 900 kr
Angular 14 Development [+]
Angular 14 Development [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer