IT-kurs
Vestland
Du har valgt: Hjelmås
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Hjelmås ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Virtuelt klasserom 2 dager 15 000 kr
This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional f... [+]
The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available.   Agenda Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og ... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Studenten bør kunne installere linux, og kjenne til enkle linuxkommandoer som f.eks. «ls». Nybegynnere uten erfaring med linux anbefales å starte med emnet Praktisk Linux, som gir disse forkunnskapene. Innleveringer: Øvinger: 8 av 12 må være godkjent. Vurderingsform: Skriftlig eksamen 3t (60%) og mappe (40%), der alle øvinger er med i mappevurderingen. Ansvarlig: Helge Hafting Eksamensdato: 18.12.13 / 27.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten:- kan legge planer for en ny tjenermaskin- kan forklare bruk av ulike filsystemer, kvoter og aksesskontrollister FERDIGHETER:Kandidaten:- kan installere linux og vanlig tjenerprogramvare- kan vedlikeholde oppsettet på en tjenermaskin, som regel ved å tilpasse konfigurasjonsfiler- kan lete opp informasjon på nettet, for å løse drifts- og installasjonsproblemer GENERELL KOMPETANSE:Kandidaten:- kan vurdere linuxprogramvare for å dekke en organisasjons behov for tjenester Innhold:Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og automasjon.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Linux systemdrift 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 3 timer 6 950 kr
Kurset gir en innføring i digitalisering og hvordan digitalisering påvirker og kan utnyttes til å skape økt vekst og innovasjon. [+]
Digital strategi i styrerommet   * Ca. 3 timer kurs spesialtilpasset for mindre deltakergrupper (1 - 6 deltakere) med mulighet for dialog, spørsmål og avklaringer underveis. Kurset leveres normalt nettbasert - alternativt - som fysisk kurs etter avtale med kursholder, eller i henhold til særskilt annonsering / tilbud. Kurset / Alle våre kan også leveres som et eksklusivt kurs der kun du og foreleser deltar. Ved slik eksklusiv leveranse får du mulighet til personlig gjennomgang med en av våre profesjonell kursholdere og konsulenter innenfor det aktuelle tema. Ved bestilling av eksklusiv / personlig kursdato for deg selv, vil kursholder kontakte deg direkte, og avtale konkret kursdato. **Alle spesialkurs, kan også leveres som bedriftsinterne kurs, kurs for hele styret, hele ledergruppen etc.   Kurset gir en innføring i digitalisering og hvordan digitalisering påvirker og kan utnyttes til å skape økt vekst og innovasjon. Deltagerne får en innføring i et rammeverk for utvikling av en fokusert digital strategi tilpasset virksomheten.   I tillegg vil deltagerne vil bli kjent med nødvendige begreper, anerkjente metoder og strategiske verktøy, og få delta i spennende gruppearbeid. I tillegg ser vi på hvordan arbeid med digitalisering kan organiseres og hva som er de viktigste virkemidlene for å lykkes.    Kurset tar utgangspunktet i internasjonal forskning knyttet til digitalisering, og gir en grundig innføring i de sentrale elementene i en digital strategi som styre og ledelse i virksomhetene bør konsentrere seg om. Kurset avmystifiserer begrepet digitalisering med forenklet terminologi, og gir deltagerne det nødvendige grunnlaget for å kunne delta aktivt i å utvikle fokuserte digitale strategier. I en verden hvor digitaliseringen driver endringstakten stadig raskere, blir retning og et tydelig fremtidsbilde viktigere enn rene langsiktige mål. Samtidig må man ha et felles begrepsapparat, forstå driverne og ofte benytte utradisjonelle virkemidler og nye forretningsmodeller for å lykkes.    Formålet med kurset: Formålet er å gi deltagerne et forenklet rammeverk for å kunne diskutere og sette premisser ved utvikling av en fokusert digital strategi. Videre vil deltagerne få avmystifisert begrepet digitalisering, få en forståelse av hva digitalisering i realiteten betyr for virksomheten og få konkretisert hva man kan gjøre for å utnytte de mulighetene som digitaliseringen gir.   Kursinnhold:  Hvordan kan styret sette premisser gjennom en fokusert digital strategi? Hva er digitalisering egentlig, hva er driverne og hvor fort går det? Hvilke muligheter og trusler gir digitalisering? Hva kreves for å lykkes? Digitalisering vs. IT Digital innovasjon Digital forretningsutvikling Digital transformasjon Digitale forretningsmodeller Strategiprosesser Digital strategi Fremtidsscenario Virkemidler Strategiske partnerskap Organisering og kompetanse   Målgruppe:  Målgruppen er primært styreledere, styremedlemmer, eiere og ledere som er opptatt av prosessene omkring digitalisering og digital strategi i styrerommet.    [-]
Les mer
Oslo Trondheim Og 1 annet sted 2 dager 20 900 kr
18 Aug
25 Aug
25 Aug
TOGAF® EA Training Foundation [+]
TOGAF® EA Training Foundation [-]
Les mer
Bedriftsintern 1 dag 7 500 kr
Data science og maskinlæring er blitt en viktig drivkraft bak mange forretnings beslutninger. Men fortsatt er mange usikre på hva begrepene innebærer og hvilke muligheter... [+]
Dette kurset tilbys som bedriftsinternt kurs   Maskinlæring handler om sette datamaskiner i stand til å lære fra og utvikle atferd basert på data. Det vil si at en datamaskin kan løse en oppgave den ikke er eksplisitt programmert for å håndtere. I stedet er den i stand til å automatisk lære gjenkjenning av komplekse mønstre i data og gjøre beslutninger basert på dette disse. Maskinlæring gir store muligheter, men mange bedrifter har problemer med å ta teknologien i bruk. Nøyaktig hvilke oppgaver kan maskinlæring utføre, og hvordan kommer man i gang? Dette kurset gir oversikt over mulighetene som ligger i maskinlæring, og hvordan i tillegg til kunnskap om hvordan teknologien kan løse oppgaver og skape resultater i praksis. Hva er maskinlæring, datavitenskap og kunstig intelligens og hvordan det er relatert til statistikk og dataanalyse? Hvordan å utvinne kunnskap fra dataene dine? Hva betyr Big data og hvordan analyseres det? Hvor og hvordan skal du bruke maskinlæring til dine daglige forretningsproblemer? Hvordan bruke datamønstre til å ta avgjørelser og spådommer med eksempler fra den virkelige verden? Hvilke typer forretningsproblemer kan en maskinen lære å håndtere Muligheter som maskinlæring gir din bedrift Hva er de teoretiske aspekter på metoder innen maskinlæring? Hvilke ML-metoder som er relevante for ulike problemstillinger innen dataanalyse? Hvordan evaluere styrker og svakheter mellom disse algoritmene og velge den beste? Anvendt data science og konkrete kunde eksempler i praksis   Målsetning Kurset gir kunnskap om hvordan maskinlæring kan løse et bestemt problem og hvilke metoder som egner seg i en gitt situasjon. Du blir i stand til å kan skaffe deg innsikt i data, og vil kunne identifisere egenskapene som representerer dem best. Du kjenner de viktigste maskinlæringsalgoritmene og hvilke metoder som evaluerer ytelsen deres best. Dette gir grunnlag for kontinuerlig forbedring av løsninger basert på maskinlæring.   [-]
Les mer
Nettkurs 9 timer 549 kr
Ta vårt videokurs i Lightroom CC fra din datamaskin. Lær så mye du vil, når du vil. Du får gratis hjelp. Du får kursbevis. Du får tilgang til alle kurs. Meld deg på her! [+]
Lightroom CC er et råflott bilderedigeringsverktøy for fotoentusiaster. Lightroom CC inneholder alt du trenger for å organisere, redigere, lagre og dele bildene dine på tvers av enheter - dette være seg datamaskin, nettbrett eller mobil. Det betyr at du kan redigere et bilde på datamaskinen og fortsette på mobilen. Bildene synkroniseres nemlig i skyen. I dette kurset kommer Espen Faugstad til å guide deg gjennom programmet fra A til Å. Du kommer til å lære å importere og organisere, redigere ved hjelp av enkle og avanserte verktøy, og eksportere og dele. Du kommer også til å lære hvordan den skybaserte lagringsplassen kommer til å påvirke, og ikke minst, forbedre din digitale arbeidsflyt.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Importere Kapittel 3: Organisere Kapittel 4: Redigere (enkel) Kapittel 5: Beskjære Kapittel 6: Redigere (avansert) Kapittel 7: Eksportere Kapittel 8: Avslutning   Varighet: 2 timer og 16 minutter.   Hørt om Netflix? Vi er som dem, bare at vi lager nettkurs. Utdannet.no AS er en norsk startup som utvikler nettkurs i datateknologi, kreative fagfelt og grunnleggende forretningsferdigheter. Med støtte fra Innovasjon Norge og Forskningsrådet utvikler vi nestegenerasjons kursplattform, med mål om å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle. Med over 1 million videovisninger, 20.000 registrerte medlemmer og en gjennomsnittlig årlig vekst på 45 % er vi godt i gang med å befeste vår posisjon i det norske markedet. Vi har kunder fra bedrifter som: Adresseavisen, Coca-Cola, Helsedirektoratet, IKEA, Joblearn, NAV, Nordea, NorgesGruppen, NRK, Oslo kommune, Securitas, Telenor og Utdanningsforbundet.   [-]
Les mer
Virtuelt klasserom 4 dager 23 000 kr
This course prepares students with the background to design and evaluate cybersecurity strategies in the following areas: Zero Trust, Governance Risk Compliance (GRC), se... [+]
. Students will also learn how to design and architect solutions using zero trust principles and specify security requirements for cloud infrastructure in different service models (SaaS, PaaS, IaaS). TARGET AUDIENCE IT professionals with advanced experience and knowledge in a wide range of security engineering areas, including identity and access, platform protection, security operations, securing data, and securing applications. They should also have experience with hybrid and cloud implementations. COURSE OBJECTIVES Design a Zero Trust strategy and architecture Evaluate Governance Risk Compliance (GRC) technical strategies and security operations strategies Design security for infrastructure Design a strategy for data and applications COURSE CONTENT Module 1: Build an overall security strategy and architecture Learn how to build an overall security strategy and architecture. Lessons M1 Introduction Zero Trust overview Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design a security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Understand security for protocols Exercise: Build an overall security strategy and architecture Knowledge check Summary After completing module 1, students will be able to: Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Module 2: Design a security operations strategy Learn how to design a security operations strategy. Lessons M2 Introduction Understand security operations frameworks, processes, and procedures Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, Evaluate security workflows Review security strategies for incident management Evaluate security operations strategy for sharing technical threat intelligence Monitor sources for insights on threats and mitigations After completing module 2, students will be able to: Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments. Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, A Evaluate security workflows. Review security strategies for incident management. Evaluate security operations for technical threat intelligence. Monitor sources for insights on threats and mitigations. Module 3: Design an identity security strategy Learn how to design an identity security strategy. Lessons M3 Introduction Secure access to cloud resources Recommend an identity store for security Recommend secure authentication and security authorization strategies Secure conditional access Design a strategy for role assignment and delegation Define Identity governance for access reviews and entitlement management Design a security strategy for privileged role access to infrastructure Design a security strategy for privileged activities Understand security for protocols After completing module 3, students will be able to: Recommend an identity store for security. Recommend secure authentication and security authorization strategies. Secure conditional access. Design a strategy for role assignment and delegation. Define Identity governance for access reviews and entitlement management. Design a security strategy for privileged role access to infrastructure. Design a security strategy for privileged access. Module 4: Evaluate a regulatory compliance strategy Learn how to evaluate a regulatory compliance strategy. Lessons M4 Introduction Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency Requirements Translate privacy requirements into requirements for security solutions After completing module 4, students will be able to: Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency requirements Translate privacy requirements into requirements for security solutions Module 5: Evaluate security posture and recommend technical strategies to manage risk Learn how to evaluate security posture and recommend technical strategies to manage risk. Lessons M5 Introduction Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks After completing module 5, students will be able to: Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks Module 6: Understand architecture best practices and how they are changing with the Cloud Learn about architecture best practices and how they are changing with the Cloud. Lessons M6 Introduction Plan and implement a security strategy across teams Establish a strategy and process for proactive and continuous evolution of a security strategy Understand network protocols and best practices for network segmentation and traffic filtering After completing module 6, students will be able to: Describe best practices for network segmentation and traffic filtering. Plan and implement a security strategy across teams. Establish a strategy and process for proactive and continuous evaluation of security strategy. Module 7: Design a strategy for securing server and client endpoints Learn how to design a strategy for securing server and client endpoints. Lessons M7 Introduction Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type After completing module 7, students will be able to: Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type Module 8: Design a strategy for securing PaaS, IaaS, and SaaS services Learn how to design a strategy for securing PaaS, IaaS, and SaaS services. Lessons M8 Introduction Specify security baselines for PaaS services Specify security baselines for IaaS services Specify security baselines for SaaS services Specify security requirements for IoT workloads Specify security requirements for data workloads Specify security requirements for web workloads Specify security requirements for storage workloads Specify security requirements for containers Specify security requirements for container orchestration After completing module 8, students will be able to: Specify security baselines for PaaS, SaaS and IaaS services Specify security requirements for IoT, data, storage, and web workloads Specify security requirements for containers and container orchestration Module 9: Specify security requirements for applications Learn how to specify security requirements for applications. Lessons M9 Introduction Understand application threat modeling Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs After completing module 9, students will be able to: Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs Module 10: Design a strategy for securing data Learn how to design a strategy for securing data. Lessons M10 Introduction Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion After completing module 10, students will be able to: Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led class provides an overview of Google Cloud Platform products and services. Through a combination of presentations and hands-on labs, participa... [+]
Objectives This course teaches participants the following skills: Identify the purpose and value of each of the Google Cloud Platform products and services Interact with Google Cloud Platform services Describe ways in which customers have used Google Cloud Platform Choose among and use application deployment environments on Google Cloud Platform: Google App Engine, Google Kubernetes Engine, and Google Compute Engine Choose among and use Google Cloud Platform storage options: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore Make basic use of BigQuery, Google’s managed data warehouse for analytics Make basic use of Cloud Deployment Manager, Google’s tool for creating and managing cloud resources through templates Make basic use of Google Stackdriver, Google’s monitoring, logging, and diagnostics system All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud Platform -Explain the advantages of Google Cloud Platform-Define the components of Google's network infrastructure, including: Points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud Platform -Identify the purpose of projects on Google Cloud Platform-Understand the purpose of and use cases for Identity and Access Management-List the methods of interacting with Google Cloud Platform-Lab: Getting Started with Google Cloud Platform Module 3: Virtual Machines and Networks in the Cloud -Identify the purpose of and use cases for Google Compute Engine.-Understand the various Google Cloud Platform networking and operational tools and services.-Lab: Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore.-Learn how to choose between the various storage options on Google Cloud Platform.-Lab: Cloud Storage and Cloud SQL Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers.-Identify the purpose of and use cases for Google Kubernetes Engine and Kubernetes.-Lab: Kubernetes Engine Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine.-Contrast the App Engine Standard environment with the App Engine Flexible environment.-Understand the purpose of and use cases for Google Cloud Endpoints.-Lab: App Engine Module 7: Developing, Deploying, and Monitoring in the Cloud -Understand options for software developers to host their source code.-Understand the purpose of template-based creation and management of resources.-Understand the purpose of integrated monitoring, alerting, and debugging.-Lab: Deployment Manager and Stackdriver Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms.-Lab: BigQuery [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
03 Sep
22 Oct
03 Dec
Du arver et regneark fra en kollega som har sluttet eller gått over i en annen stilling, eller andre har laget et regneark som du skal bruke og utvikle. Hvordan går du fr... [+]
Kursinnhold Enkle formler Cellereferanser Gi navn til celler og områder Feilkontroll og formelrevisjon Hente data fra andre ark og arbeidsbøker Egendefinerte tallformater Betinget formatering Utklippstavle og avansert innliming   Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer.   Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Nettkurs 2 timer 549 kr
Har du noen gang lurt på hvordan det er å designe en avisartikkel? I dette kurset lærer du hvordan. Kurset er bygget opp som en workshop. Målet vårt er at du skal ha desi... [+]
Har du noen gang lurt på hvordan du designer en avisartikkel? Dette kurset gir deg muligheten til å lære akkurat det. Kurset er strukturert som en workshop, med målet om at du skal kunne designe din egen avisartikkel når kurset er ferdig. Du har muligheten til å følge instruktøren eller velge din egen avis- eller magasinartikkel som utgangspunkt. Kurset er utviklet av Espen Faugstad, en autorisert Photoshop-ekspert. Du vil lære å tilpasse brukergrensesnittet i Adobe InDesign, opprette et dokument, legge til grafiske elementer og tekst. I tillegg vil du få opplæring i opprettelse, organisering og formatering av elementer som bilder, bildetekster, overskrifter, ingress og mer. En grunnleggende forståelse av InDesign er nødvendig for å dra nytte av dette kurset. Kapittel 1: Introduksjon Kapittel 2: Kladd Kapittel 3: Ferdigstille Kapittel 4: Avslutning Dette kurset gir deg praktiske ferdigheter innen avisdesign ved hjelp av Adobe InDesign, og gir deg muligheten til å utforske kreativiteten din innenfor dette området. Om du er en aspirerende designer eller bare nysgjerrig på hvordan avisdesign fungerer, er dette kurset for deg.   Varighet: 1 time og 34 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer