IT-kurs
Du har valgt: Hörby
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Hörby ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
2 dager 12 900 kr
Ønsker du å jobbe med ulike tegninger i Visio, men føler du ikke mestrer programmet? Vil du i tillegg kunne lage egne maler for å jobbe mer effektivt? Da er ”Visio ... [+]
Ønsker du å jobbe med ulike tegninger i Visio, men føler du ikke mestrer programmet? Vil du i tillegg kunne lage egne maler for å jobbe mer effektivt? Da er ”Visio Grunnleggende” kurset for deg! Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Hva er Visio? Få oversikt. Bli kjent med programvinduet og hvordan du kan tilpasse det etter dine behov. Mal. Hvordan er en mal bygd opp og hvordan jobbe med en tegning? Formatering. Lær å formatere og hva formateringsbegrepet betyr. Sjablonger og figurer. Hva er sjablonger og figurer?   Å jobbe effektivt med Visio Bygge opp en tegning. Lær å bygge opp en tegning fra bunnen av. Hurtigtaster. Effektiv bruk av tastatur og mus. Formatering. Bruk formatering for å gjøre tegningene oversiktlige og informasjonen mest mulig tilgjengelig. Ark. Lær å jobbe med flere ark, navngi dem, slette dem, bruke bakgrunner etc. Praktisk oppgaveløsing. Jobb med skreddersydde oppgaver innenfor dagens temaer. Andre Office-programmer. Lær å bruke Visio-tegninger i andre Office-programmer.   Flytskjema og organisasjonskart Koblinger. Lær å koble figurer på en effektiv måte. Oppsett. Hvordan sørge for at figurene står plassert på en nøyaktig og oversiktlig måte? Navigasjon. Bygge opp praktisk navigasjon mellom sidene i en større tegning.   Dag 2    Nettverksdiagram Figurdata. Knytt praktisk informasjon til figurene i tegningen. Rapporter. Hvordan hente ut rapporter fra en tegning?   Prosjektplaner Tidslinje. Illustrere faser i et prosjekt på en oversiktlig måte. Gantt-diagram. Vise prosjektinformasjon på en mer detaljert måte. Utskrift. Få oversikt over de vanligste problemstillingene ved utskrift.   Egne maler Maler. Hva er maler, deres styrke og hvordan kan jeg utnytte dem best mulig i mitt arbeid? Sjablonger. Bygge opp en egen samling med de figurene du skal bruke. Figurer. Lær å lage egne tilpassede figurer. Praktisk oppgaveløsing. Jobb med skreddersydde oppgaver innenfor dagens temaer.   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Virtuelt klasserom 4 dager 22 000 kr
Learn how to investigate, respond to, and hunt for threats using Microsoft Azure Sentinel, Azure Defender, and Microsoft 365 Defender. [+]
COURSE OVERVIEW Learn how to investigate, respond to, and hunt for threats using Microsoft Azure Sentinel, Azure Defender, and Microsoft 365 Defender. In this course you will learn how to mitigate cyberthreats using these technologies. Specifically, you will configure and use Azure Sentinel as well as utilize Kusto Query Language (KQL) to perform detection, analysis, and reporting. The course was designed for people who work in a Security Operations job role and helps learners prepare for the exam SC-200: Microsoft Security Operations Analyst. TARGET AUDIENCE The Microsoft Security Operations Analyst collaborates with organizational stakeholders to secure information technology systems for the organization. Their goal is to reduce organizational risk by rapidly remediating active attacks in the environment, advising on improvements to threat protection practices, and referring violations of organizational policies to appropriate stakeholders. Responsibilities include threat management, monitoring, and response by using a variety of security solutions across their environment. The role primarily investigates, responds to, and hunts for threats using Microsoft Azure Sentinel, Azure Defender, Microsoft 365 Defender, and third-party security products. Since the Security Operations Analyst consumes the operational output of these tools, they are also a critical stakeholder in the configuration and deployment of these technologies. COURSE OBJECTIVES Explain how Microsoft Defender for Endpoint can remediate risks in your environment Create a Microsoft Defender for Endpoint environment Configure Attack Surface Reduction rules on Windows 10 devices Perform actions on a device using Microsoft Defender for Endpoint Investigate domains and IP addresses in Microsoft Defender for Endpoint Investigate user accounts in Microsoft Defender for Endpoint Configure alert settings in Microsoft Defender for Endpoint Explain how the threat landscape is evolving Conduct advanced hunting in Microsoft 365 Defender Manage incidents in Microsoft 365 Defender Explain how Microsoft Defender for Identity can remediate risks in your environment. Investigate DLP alerts in Microsoft Cloud App Security Explain the types of actions you can take on an insider risk management case. Configure auto-provisioning in Azure Defender Remediate alerts in Azure Defender Construct KQL statements Filter searches based on event time, severity, domain, and other relevant data using KQL Extract data from unstructured string fields using KQL Manage an Azure Sentinel workspace Use KQL to access the watchlist in Azure Sentinel Manage threat indicators in Azure Sentinel Explain the Common Event Format and Syslog connector differences in Azure Sentinel Connect Azure Windows Virtual Machines to Azure Sentinel Configure Log Analytics agent to collect Sysmon events Create new analytics rules and queries using the analytics rule wizard Create a playbook to automate an incident response Use queries to hunt for threats Observe threats over time with livestream COURSE CONTENT Module 1: Mitigate threats using Microsoft Defender for Endpoint Implement the Microsoft Defender for Endpoint platform to detect, investigate, and respond to advanced threats. Learn how Microsoft Defender for Endpoint can help your organization stay secure. Learn how to deploy the Microsoft Defender for Endpoint environment, including onboarding devices and configuring security. Learn how to investigate incidents and alerts using Microsoft Defender for Endpoints. Perform advanced hunting and consult with threat experts. You will also learn how to configure automation in Microsoft Defender for Endpoint by managing environmental settings.. Lastly, you will learn about your environment's weaknesses by using Threat and Vulnerability Management in Microsoft Defender for Endpoint. Lessons M1 Protect against threats with Microsoft Defender for Endpoint Deploy the Microsoft Defender for Endpoint environment Implement Windows 10 security enhancements with Microsoft Defender for Endpoint Manage alerts and incidents in Microsoft Defender for Endpoint Perform device investigations in Microsoft Defender for Endpoint Perform actions on a device using Microsoft Defender for Endpoint Perform evidence and entities investigations using Microsoft Defender for Endpoint Configure and manage automation using Microsoft Defender for Endpoint Configure for alerts and detections in Microsoft Defender for Endpoint Utilize Threat and Vulnerability Management in Microsoft Defender for Endpoint Lab M1: Mitigate threats using Microsoft Defender for Endpoint Deploy Microsoft Defender for Endpoint Mitigate Attacks using Defender for Endpoint After completing module 1, students will be able to: Define the capabilities of Microsoft Defender for Endpoint Configure Microsoft Defender for Endpoint environment settings Configure Attack Surface Reduction rules on Windows 10 devices Investigate alerts in Microsoft Defender for Endpoint Describe device forensics information collected by Microsoft Defender for Endpoint Conduct forensics data collection using Microsoft Defender for Endpoint Investigate user accounts in Microsoft Defender for Endpoint Manage automation settings in Microsoft Defender for Endpoint Manage indicators in Microsoft Defender for Endpoint Describe Threat and Vulnerability Management in Microsoft Defender for Endpoint Module 2: Mitigate threats using Microsoft 365 Defender Analyze threat data across domains and rapidly remediate threats with built-in orchestration and automation in Microsoft 365 Defender. Learn about cybersecurity threats and how the new threat protection tools from Microsoft protect your organization’s users, devices, and data. Use the advanced detection and remediation of identity-based threats to protect your Azure Active Directory identities and applications from compromise. Lessons M2 Introduction to threat protection with Microsoft 365 Mitigate incidents using Microsoft 365 Defender Protect your identities with Azure AD Identity Protection Remediate risks with Microsoft Defender for Office 365 Safeguard your environment with Microsoft Defender for Identity Secure your cloud apps and services with Microsoft Cloud App Security Respond to data loss prevention alerts using Microsoft 365 Manage insider risk in Microsoft 365 Lab M2: Mitigate threats using Microsoft 365 Defender Mitigate Attacks with Microsoft 365 Defender After completing module 2, students will be able to: Explain how the threat landscape is evolving. Manage incidents in Microsoft 365 Defender Conduct advanced hunting in Microsoft 365 Defender Describe the investigation and remediation features of Azure Active Directory Identity Protection. Define the capabilities of Microsoft Defender for Endpoint. Explain how Microsoft Defender for Endpoint can remediate risks in your environment. Define the Cloud App Security framework Explain how Cloud Discovery helps you see what's going on in your organization Module 3: Mitigate threats using Azure Defender Use Azure Defender integrated with Azure Security Center, for Azure, hybrid cloud, and on-premises workload protection and security. Learn the purpose of Azure Defender, Azure Defender's relationship to Azure Security Center, and how to enable Azure Defender. You will also learn about the protections and detections provided by Azure Defender for each cloud workload. Learn how you can add Azure Defender capabilities to your hybrid environment. Lessons M3 Plan for cloud workload protections using Azure Defender Explain cloud workload protections in Azure Defender Connect Azure assets to Azure Defender Connect non-Azure resources to Azure Defender Remediate security alerts using Azure Defender Lab M3: Mitigate threats using Azure Defender Deploy Azure Defender Mitigate Attacks with Azure Defender After completing module 3, students will be able to: Describe Azure Defender features Explain Azure Security Center features Explain which workloads are protected by Azure Defender Explain how Azure Defender protections function Configure auto-provisioning in Azure Defender Describe manual provisioning in Azure Defender Connect non-Azure machines to Azure Defender Describe alerts in Azure Defender Remediate alerts in Azure Defender Automate responses in Azure Defender Module 4: Create queries for Azure Sentinel using Kusto Query Language (KQL) Write Kusto Query Language (KQL) statements to query log data to perform detections, analysis, and reporting in Azure Sentinel. This module will focus on the most used operators. The example KQL statements will showcase security related table queries. KQL is the query language used to perform analysis on data to create analytics, workbooks, and perform hunting in Azure Sentinel. Learn how basic KQL statement structure provides the foundation to build more complex statements. Learn how to summarize and visualize data with a KQL statement provides the foundation to build detections in Azure Sentinel. Learn how to use the Kusto Query Language (KQL) to manipulate string data ingested from log sources. Lessons M4 Construct KQL statements for Azure Sentinel Analyze query results using KQL Build multi-table statements using KQL Work with data in Azure Sentinel using Kusto Query Language Lab M4: Create queries for Azure Sentinel using Kusto Query Language (KQL) Construct Basic KQL Statements Analyze query results using KQL Build multi-table statements using KQL Work with string data using KQL statements After completing module 4, students will be able to: Construct KQL statements Search log files for security events using KQL Filter searches based on event time, severity, domain, and other relevant data using KQL Summarize data using KQL statements Render visualizations using KQL statements Extract data from unstructured string fields using KQL Extract data from structured string data using KQL Create Functions using KQL Module 5: Configure your Azure Sentinel environment Get started with Azure Sentinel by properly configuring the Azure Sentinel workspace. Traditional security information and event management (SIEM) systems typically take a long time to set up and configure. They're also not necessarily designed with cloud workloads in mind. Azure Sentinel enables you to start getting valuable security insights from your cloud and on-premises data quickly. This module helps you get started. Learn about the architecture of Azure Sentinel workspaces to ensure you configure your system to meet your organization's security operations requirements. As a Security Operations Analyst, you must understand the tables, fields, and data ingested in your workspace. Learn how to query the most used data tables in Azure Sentinel. Lessons M5 Introduction to Azure Sentinel Create and manage Azure Sentinel workspaces Query logs in Azure Sentinel Use watchlists in Azure Sentinel Utilize threat intelligence in Azure Sentinel Lab M5 : Configure your Azure Sentinel environment Create an Azure Sentinel Workspace Create a Watchlist Create a Threat Indicator After completing module 5, students will be able to: Identify the various components and functionality of Azure Sentinel. Identify use cases where Azure Sentinel would be a good solution. Describe Azure Sentinel workspace architecture Install Azure Sentinel workspace Manage an Azure Sentinel workspace Create a watchlist in Azure Sentinel Use KQL to access the watchlist in Azure Sentinel Manage threat indicators in Azure Sentinel Use KQL to access threat indicators in Azure Sentinel Module 6: Connect logs to Azure Sentinel Connect data at cloud scale across all users, devices, applications, and infrastructure, both on-premises and in multiple clouds to Azure Sentinel. The primary approach to connect log data is using the Azure Sentinel provided data connectors. This module provides an overview of the available data connectors. You will get to learn about the configuration options and data provided by Azure Sentinel connectors for Microsoft 365 Defender. Lessons M6 Connect data to Azure Sentinel using data connectors Connect Microsoft services to Azure Sentinel Connect Microsoft 365 Defender to Azure Sentinel Connect Windows hosts to Azure Sentinel Connect Common Event Format logs to Azure Sentinel Connect syslog data sources to Azure Sentinel Connect threat indicators to Azure Sentinel Lab M6: Connect logs to Azure Sentinel Connect Microsoft services to Azure Sentinel Connect Windows hosts to Azure Sentinel Connect Linux hosts to Azure Sentinel Connect Threat intelligence to Azure Sentinel After completing module 6, students will be able to: Explain the use of data connectors in Azure Sentinel Explain the Common Event Format and Syslog connector differences in Azure Sentinel Connect Microsoft service connectors Explain how connectors auto-create incidents in Azure Sentinel Activate the Microsoft 365 Defender connector in Azure Sentinel Connect Azure Windows Virtual Machines to Azure Sentinel Connect non-Azure Windows hosts to Azure Sentinel Configure Log Analytics agent to collect Sysmon events Explain the Common Event Format connector deployment options in Azure Sentinel Configure the TAXII connector in Azure Sentinel View threat indicators in Azure Sentinel Module 7: Create detections and perform investigations using Azure Sentinel Detect previously uncovered threats and rapidly remediate threats with built-in orchestration and automation in Azure Sentinel. You will learn how to create Azure Sentinel playbooks to respond to security threats. You'll investigate Azure Sentinel incident management, learn about Azure Sentinel events and entities, and discover ways to resolve incidents. You will also learn how to query, visualize, and monitor data in Azure Sentinel. Lessons M7 Threat detection with Azure Sentinel analytics Threat response with Azure Sentinel playbooks Security incident management in Azure Sentinel Use entity behavior analytics in Azure Sentinel Query, visualize, and monitor data in Azure Sentinel Lab M7: Create detections and perform investigations using Azure Sentinel Create Analytical Rules Model Attacks to Define Rule Logic Mitigate Attacks using Azure Sentinel Create Workbooks in Azure Sentinel After completing module 7, students will be able to: Explain the importance of Azure Sentinel Analytics. Create rules from templates. Manage rules with modifications. Explain Azure Sentinel SOAR capabilities. Create a playbook to automate an incident response. Investigate and manage incident resolution. Explain User and Entity Behavior Analytics in Azure Sentinel Explore entities in Azure Sentinel Visualize security data using Azure Sentinel Workbooks. Module 8: Perform threat hunting in Azure Sentinel In this module, you'll learn to proactively identify threat behaviors by using Azure Sentinel queries. You'll also learn to use bookmarks and livestream to hunt threats. You will also learn how to use notebooks in Azure Sentinel for advanced hunting. Lessons M8 Threat hunting with Azure Sentinel Hunt for threats using notebooks in Azure Sentinel Lab M8 : Threat hunting in Azure Sentinel Threat Hunting in Azure Sentinel Threat Hunting using Notebooks After completing this module, students will be able to: Describe threat hunting concepts for use with Azure Sentinel Define a threat hunting hypothesis for use in Azure Sentinel Use queries to hunt for threats. Observe threats over time with livestream. Explore API libraries for advanced threat hunting in Azure Sentinel Create and use notebooks in Azure Sentinel [-]
Les mer
Oslo 3 dager 20 000 kr
25 Aug
25 Aug
27 Oct
AZ-700: Designing and Implementing Microsoft Azure Networking Solutions [+]
AZ-700: Designing and Implementing Microsoft Azure Networking Solutions [-]
Les mer
1 dag 9 500 kr
21 Aug
AI-3016: Develop custom copilots with Azure AI Studio [+]
AI-3016: Develop custom copilots with Azure AI Studio [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, L... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende objektorientert programmering i for eksempel Java eller C++ Innleveringer: Øvinger: 8 av 11 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 4 timer. Case-beskrivelser etc. legges ut i ItsLearning 24 timer før. (NB! Eksamensform kan bli endret under forutsetning av at ny teknologi gjør det mulig å arrangere eksamen elektronisk.) Ansvarlig: Grethe Sandstrak Eksamensdato: 05.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal kandidaten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan gjøre rede for sentrale begreper innen objektorientering- kan konstruere et objektorientert C#. NET-program ut fra en gitt problemstilling- kan finne fram, sette seg inn i og anvende dokumentasjon om .NET Framework library- kjenner til ulike GUI-komponenter og hvordan de brukes i C#-programmer FERDIGHETER:Kandidaten kan:- sette opp programmiljø for å utvikle og kjøre C#. NET applikasjoner på egen pc- kan anvende klasser fra .NET Framework library- lage C#.NET program* med fordeling av oppgaver mellom objekter og der arv og polymorfi benyttes* med grafiske brukergrensesnitt* som kommuniserer med en database via SQL* med LINQ, delegater, templates GENERELL KOMPETANSEKandidaten kan:- kommunisere om objektorientert programmering og databaser med relevant begrepsapparat Innhold:NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, LINQ, Templates, Collections.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag C#.NET 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt eller personlig 1 dag 3 120 kr
Målsetning for kurset: Opparbeide ferdigheter i å navigere, kommunisere og hente ut informasjon fra BIM-modeller i IFC-formatet med bruk av Solibri Anywhere. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt.NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Solibri Anywhere og Site   På kurset vil du lære å: Sammenstille flere IFC-modeller og navigere i disse Velge ut grupper av objekter for nærmere studier Legge inn snitt, måle, markere og opprette slides fra visninger av modellen Opprette rapporter og kommentere «issues» i Excel og BCF-format Se på resultatet av utførte regelsjekker i modellen Se på resultatet av utførte informasjons- og mengdeuttak fra modellen Høste informasjon og mengder fra modellen basert på eksisterende maler og klassifikasjoner Skape egne klassifikasjoner og definisjoner for megndeuttak   Dette er et populært kurs, meld deg på nå! Spesialtilpasset kurs: NTI anbefaler spesialtilpassede kurs for bedrifter som planlegger å sende to eller flere deltakere på Solibri-kurs. Grunnen til dette er at Solibri brukes av mange forskjellige aktører og profesjoner i BAE-bransjen, og følgelig blir de åpne kursene ofte for generelle for enkelte kursdeltakere. I et spesialtilpasset kurs vil vår kurskonsulent kartlegge fokusområdene i forkant av kurset, og gjennomføre kurset i henhold til selskapets behov, gjerne basert på kundens egne modeller. Utbyttet av kurset blir følgelig mye større.  Ta kontakt med oss på telefon 483 12 300, epost: salg-no@nti.biz eller les mer på www.nti.biz   [-]
Les mer
Virtuelt klasserom 4 dager 23 000 kr
This course prepares students with the background to design and evaluate cybersecurity strategies in the following areas: Zero Trust, Governance Risk Compliance (GRC), se... [+]
. Students will also learn how to design and architect solutions using zero trust principles and specify security requirements for cloud infrastructure in different service models (SaaS, PaaS, IaaS). TARGET AUDIENCE IT professionals with advanced experience and knowledge in a wide range of security engineering areas, including identity and access, platform protection, security operations, securing data, and securing applications. They should also have experience with hybrid and cloud implementations. COURSE OBJECTIVES Design a Zero Trust strategy and architecture Evaluate Governance Risk Compliance (GRC) technical strategies and security operations strategies Design security for infrastructure Design a strategy for data and applications COURSE CONTENT Module 1: Build an overall security strategy and architecture Learn how to build an overall security strategy and architecture. Lessons M1 Introduction Zero Trust overview Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design a security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Understand security for protocols Exercise: Build an overall security strategy and architecture Knowledge check Summary After completing module 1, students will be able to: Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Module 2: Design a security operations strategy Learn how to design a security operations strategy. Lessons M2 Introduction Understand security operations frameworks, processes, and procedures Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, Evaluate security workflows Review security strategies for incident management Evaluate security operations strategy for sharing technical threat intelligence Monitor sources for insights on threats and mitigations After completing module 2, students will be able to: Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments. Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, A Evaluate security workflows. Review security strategies for incident management. Evaluate security operations for technical threat intelligence. Monitor sources for insights on threats and mitigations. Module 3: Design an identity security strategy Learn how to design an identity security strategy. Lessons M3 Introduction Secure access to cloud resources Recommend an identity store for security Recommend secure authentication and security authorization strategies Secure conditional access Design a strategy for role assignment and delegation Define Identity governance for access reviews and entitlement management Design a security strategy for privileged role access to infrastructure Design a security strategy for privileged activities Understand security for protocols After completing module 3, students will be able to: Recommend an identity store for security. Recommend secure authentication and security authorization strategies. Secure conditional access. Design a strategy for role assignment and delegation. Define Identity governance for access reviews and entitlement management. Design a security strategy for privileged role access to infrastructure. Design a security strategy for privileged access. Module 4: Evaluate a regulatory compliance strategy Learn how to evaluate a regulatory compliance strategy. Lessons M4 Introduction Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency Requirements Translate privacy requirements into requirements for security solutions After completing module 4, students will be able to: Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency requirements Translate privacy requirements into requirements for security solutions Module 5: Evaluate security posture and recommend technical strategies to manage risk Learn how to evaluate security posture and recommend technical strategies to manage risk. Lessons M5 Introduction Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks After completing module 5, students will be able to: Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks Module 6: Understand architecture best practices and how they are changing with the Cloud Learn about architecture best practices and how they are changing with the Cloud. Lessons M6 Introduction Plan and implement a security strategy across teams Establish a strategy and process for proactive and continuous evolution of a security strategy Understand network protocols and best practices for network segmentation and traffic filtering After completing module 6, students will be able to: Describe best practices for network segmentation and traffic filtering. Plan and implement a security strategy across teams. Establish a strategy and process for proactive and continuous evaluation of security strategy. Module 7: Design a strategy for securing server and client endpoints Learn how to design a strategy for securing server and client endpoints. Lessons M7 Introduction Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type After completing module 7, students will be able to: Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type Module 8: Design a strategy for securing PaaS, IaaS, and SaaS services Learn how to design a strategy for securing PaaS, IaaS, and SaaS services. Lessons M8 Introduction Specify security baselines for PaaS services Specify security baselines for IaaS services Specify security baselines for SaaS services Specify security requirements for IoT workloads Specify security requirements for data workloads Specify security requirements for web workloads Specify security requirements for storage workloads Specify security requirements for containers Specify security requirements for container orchestration After completing module 8, students will be able to: Specify security baselines for PaaS, SaaS and IaaS services Specify security requirements for IoT, data, storage, and web workloads Specify security requirements for containers and container orchestration Module 9: Specify security requirements for applications Learn how to specify security requirements for applications. Lessons M9 Introduction Understand application threat modeling Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs After completing module 9, students will be able to: Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs Module 10: Design a strategy for securing data Learn how to design a strategy for securing data. Lessons M10 Introduction Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion After completing module 10, students will be able to: Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion [-]
Les mer
Nettstudie 6 måneder 8 000 kr
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). [+]
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). Du får et grunnlag for videre studier, og kompetanse som gjør tegnearbeidet både utfordrende og interessant. Du lærer å bli fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger.   Studentlisens for AutoCAD og Revit Structure/Architecture er inkludert. Kurset er på norsk, men AutoCAD-programmet er på engelsk. Programvaren er gratis. Du lærer å bruke de grunnleggende kommandoene slik at du kan utføre enklere tegnearbeid. Du blir fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger. Du lærer å jobbe rasjonelt og å velge enkle løsninger. Bruk av flere lag med ulike farger gir god visualisering og bedre lesing av tegningene. Målsetting og teksting er viktig, og må utføres tydelig og på en riktig måte. Flater fylles med skravur og elementer kan lagres separat for senere bruk i andre tegninger. Kurset gir deg inngående informasjon gjennom studieveiledningen om hvordan du skal bruke de enkelte kommandoene. Det stilles krav til 100 % nøyaktighet, noe du oppnår når du jobber riktig. Du får øvelser med tegneoppgaver innen bygg, elektro, elkraft og maskin.   [-]
Les mer
Virtuelt klasserom 3 dager 22 500 kr
30 Sep
02 Dec
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual CourseThe course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams, you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture    KursinnholdDette kurset forklarer det grunnleggende i softwaretesting. Det er basert på ISTQB- pensum og er akkreditert av BCS.    Kurset inneholder øvelser, prøveeksamener og spill for å fremheve sentrale deler av pensum. Dette sammen med kursmateriell og presentasjoner vil bistå i forståelse av begreper og metoder som blir presentert.   Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt   «Særs godt kurs med mye fokus på praktiske oppgaver som gjør læring vesentlig lettere. Engasjert kursleder hjelper også. Kursleder starter på et nivå som alle føler seg komfortabel med.» Alexander Røstum Course content Fundamentals of Testing This section looks at why testing is necessary, what testing is, and explains general testing principles, the fundamental test process, and psychological aspects of testing.   Skills Gained • Learn about the differences between the testing levels and targets• Know how to apply both black and white box approaches to all levels of testing• Understand the differences between the various types of review and be aware of Static Analysis• Learn aspects of test planning, estimation, monitoring and control• Communicate better through understanding standard definitions of terms• Gain knowledge of the different types of testing tools and the best way of implementing those tools   Testing throughout the software lifecycle Explains the relationship between testing and life cycle development models, including the V-model and iterative development. Outlines four levels of testing:• Component testing• Integration testing• System testing• Acceptance testing Describes four test types, the targets of testing:• functional• non-functional characteristics• structural• change-related Outlines the role of testing in maintenance.   Static Techniques Explains the differences between the various types of review, and outlines the characteristics of a formal review. Describes how static analysis can find defects.   Test Design Techniques This section explains how to identify test conditions (things to test) and how to design test cases and procedures. It also explains the difference between white and black box testing. The following techniques are described in some detail with practical exercises :• Equivalence Partitioning• Boundary Value Analysis• Decision Tables• State Transition testing• Statement and Decision testingIn addition, use case testing and experience-based testing (such as exploratory testing) are described, and advice is given on choosing techniques.   Test Management This section looks at organisational implications for testing and describes test planning and estimation, test monitoring and control. The relationship of testing and risk is covered,and configuration management and incident management.   Tool Support for Testing Different types of tool support for testing are described throughout the course. This session summarises them, and discusses how to use them effectively and how best to introduce a new tool.   The Exam The ISTQB Foundation exam is a 1-hour, 40 question multiple choice exam. There is an extra 15 minutes allowed for candidates whose first language is not English.The pass mark is 65% (26/40) and there are no pre requisites to taking this exam.The exam is a remote proctored exam [-]
Les mer
Oslo Trondheim Og 1 annet sted 3 dager 21 900 kr
20 Aug
27 Aug
27 Aug
TOGAF® EA Training Practitioner [+]
TOGAF® EA Training Practitioner [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led class provides an overview of Google Cloud Platform products and services. Through a combination of presentations and hands-on labs, participa... [+]
Objectives This course teaches participants the following skills: Identify the purpose and value of each of the Google Cloud Platform products and services Interact with Google Cloud Platform services Describe ways in which customers have used Google Cloud Platform Choose among and use application deployment environments on Google Cloud Platform: Google App Engine, Google Kubernetes Engine, and Google Compute Engine Choose among and use Google Cloud Platform storage options: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore Make basic use of BigQuery, Google’s managed data warehouse for analytics Make basic use of Cloud Deployment Manager, Google’s tool for creating and managing cloud resources through templates Make basic use of Google Stackdriver, Google’s monitoring, logging, and diagnostics system All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud Platform -Explain the advantages of Google Cloud Platform-Define the components of Google's network infrastructure, including: Points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud Platform -Identify the purpose of projects on Google Cloud Platform-Understand the purpose of and use cases for Identity and Access Management-List the methods of interacting with Google Cloud Platform-Lab: Getting Started with Google Cloud Platform Module 3: Virtual Machines and Networks in the Cloud -Identify the purpose of and use cases for Google Compute Engine.-Understand the various Google Cloud Platform networking and operational tools and services.-Lab: Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore.-Learn how to choose between the various storage options on Google Cloud Platform.-Lab: Cloud Storage and Cloud SQL Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers.-Identify the purpose of and use cases for Google Kubernetes Engine and Kubernetes.-Lab: Kubernetes Engine Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine.-Contrast the App Engine Standard environment with the App Engine Flexible environment.-Understand the purpose of and use cases for Google Cloud Endpoints.-Lab: App Engine Module 7: Developing, Deploying, and Monitoring in the Cloud -Understand options for software developers to host their source code.-Understand the purpose of template-based creation and management of resources.-Understand the purpose of integrated monitoring, alerting, and debugging.-Lab: Deployment Manager and Stackdriver Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms.-Lab: BigQuery [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 2 timer 1 990 kr
Filer i SharePoint lagres i bibliotek. Her tar vi en grundig gjennomgang av bibliotek og tilpasningsmuligheter for disse, som versjonering, maler og Office-integrasjon. [+]
Filer i SharePoint lagres i bibliotek. Her tar vi en grundig gjennomgang av bibliotek og tilpasningsmuligheter for disse, som versjonering, maler og Office-integrasjon. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Om bibliotek Møt biblioteksmalene i SharePoint Opplasting, nedlasting Office-programmene og bibliotek Områdepapirkurv   Tilpasse bibliotek Endre Office-mal for et bibliotek Tilpass kolonner og metadata   Tips til bibliotek Bruke kolonner i Word Bibliotek i Windows Utforsker   Utvidet om bibliotek Gjennomgang av versjonering Bli kjent med godkjenning Arkivering og Send til   Veien videre Introduksjon til innholdstyper Introduksjon til dokumentsenter og innholds-sortering 3 gode grunner til å delta 1. Møt SharePoint sine bibliotek-apper og lær måter å åpne og lagre i bibliotek og håndtere innholdet 2. Forstå mer om versjonering, godkjenning og arkivering 3. Bli kjent med dokumentsenter og innholds-sortering   [-]
Les mer
Oslo 2 dager 16 900 kr
03 Nov
03 Nov
MoP® Foundation [+]
MoP® Foundation [-]
Les mer