IT-kurs
Du har valgt: Järlinden-Bojsenburg
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Järlinden-Bojsenburg ) i IT-kurs
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
4 dager 24 000 kr
Oracle GoldenGate 19c: Fundamentals for Oracle [+]
Oracle GoldenGate 19c: Fundamentals for Oracle [-]
Les mer
2 dager 24 000 kr
28 Aug
23 Oct
22 Dec
SDWFND: Cisco SD WAN Operation and Deployment [+]
SDWFND: Cisco SD WAN Operation and Deployment [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu er en komplett PDF-løsning, som lar deg opprette og redigere PDF-dokumenter og tegninger. Videre kan du markere opp og gjøre mengdeuttak fra tegningene, sam... [+]
På dette online-kurset vil du lære: Publisering, redigering, kommentering og markering Sikkerhet, digitale stempler og digital signatur Opprette og lagre symboler og tilpassede markeringsverktøy i Tool Chest Skybasert samarbeid og deling av dokumenter i Bluebeam Studio eXtreme-funksjoner (OCR – Tekstfjerning - Skjema-opprettelse - Batch Link) Noen eXtreme-funksjoner blir vist/nevnt i kurset [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Automatisering og sikring ved hjelp av System Center Cooperation Manager 2012 (SCCM 2012) - Applikasjonsutrulling - Operativ System utrulling - Klient tilstands-monitorer... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Windows server 2008/2012 - god kjennskap om Windows server Innleveringer: Øvinger: 8 av må være godkjent. Personlig veileder: ja Vurderingsform: Eksamen blir arrangert som 2 dagers hjemmeeksamen (start kl 09.00 og innlevering kl 15.00 dagen etter). Hver student får tildelt et virtuelt område. Det skal også leveres en skriftelig begrunnelse for de valg som er foretatt. Hjemmeeksamen, individuell, 2 dager, 0 Ansvarlig: Stein Meisingseth Eksamensdato: 10.12.13 / 13.05.14         Læremål: KUNNSKAPER:Kandidaten:- har innsikt i drift av nettverk basert på Windows Server, programvaredistribusjon og kjenner til hvilke verktøy som kan brukes for administrasjon av virtuelle maskiner og nettverk- kan forklare systemer som kan benyttes til overvåkning og vedlikehold FERDIGHETER:Kandidaten kan:- installere og konfigurere System Center Configuration Manager 2012- automatisere manuelle operasjoner- sikre, oppdatere og overvåke IT-systemer GENERELL KOMPETANSE:Kandidaten har:- perspektiv og kompetanse i å velge riktige og tilpassete driftsløsninger- kompetanse i å formidle driftsterminologi, både muntlig og skriftlig Innhold:- Automatisering og sikring ved hjelp av System Center Cooperation Manager 2012 (SCCM 2012) - Applikasjonsutrulling - Operativ System utrulling - Klient tilstands-monitorering - Programvare oppdateringer - Sikkerhetsbeskyttelse vha Endpoint ProtectionLes mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Microsoft System Center i overvåkning og drift 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 2 dager 7 900 kr
I dagens digitaliserte verden øker mengden data med enorme størrelser hver eneste dag. Enten man jobber i store multinasjonale selskap eller i små bedrifter ser man behov... [+]
I dagens digitaliserte verden øker mengden data med enorme størrelser hver eneste dag. Enten man jobber i store multinasjonale selskap eller i små bedrifter ser man behovet for å dykke ned i data for å skaffe bedre innsikt. Veien dit vil variere fra sted til sted, men en fellesnevner er å bygge opp kompetanse rundt virksomheten sine data. Selvbetjening er en viktig bidragsyter for å bygge kompetansen og bli mer datadrevet. Begrepet kan defineres som en enkel form av styringsinformasjonssystemet, hvor brukeren har tilgang til relevant data og genererer rapporter og/eller analyser med hjelp av selvbetjeningsverktøy. Formålet er gi brukeren mulighet til å optimalisere og forenkle sine arbeidsoppgaver i tillegg til å frigjøre IT spesialister. Power BI er et verktøy som kan hjelpe dere på veien til å bli mer selvbetjent. Det er et kraftfullt analyse– og modelleringsverktøy som gjør at man kan kombinere data fra ulike kilder og sammenstille dem i rapporter og dashboards. Disse kan enkelt deles med andre i organisasjonen og tilgangsstyres i henhold til GDPR, personvern og teknisk kompetanse. Dette kurset gir en grunnleggende innføring i bruk av Power BI Desktop som selvbetjenings- og analyseverktøy for controllere, analytikere og de som jobber med virksomhetsrapportering. Deltakerne vil få en grunnleggende innføring i: Innlasting av data Datamodellering (best practice) Forhold mellom tabeller Power Query og datatransformasjoner DAX (kalkulerte mål og kolonner) Datavisualisering, formattering og rapportoppsett Filtrering, slicers og drillthrough funksjon Navigasjon og bokmerker Publisering av rapport til Power BI Service og overordnet modell for utrulling av Power BI i organisasjonen vil bli presentert i kurset, men disse tema vil ikke bli dekket i dybden. Ta med egen PC med nyeste versjon av Power BI. Du bør også ha signet opp med en 30-dagers gratislisens for Power BI Pro.   Kursinnhold Innlastning av data Kurset bygger på et datasett fra en fiktiv global leverandør av sykkelutstyr hvor data er fordelt på en fakta tabell med tilhørende dimensjonstabeller. Datasettet hentes fra en Excel-fil som er tilsendt før kurset, men denne fremgangsmåten kan enkelt overføres til andre strukturerte databaser. Datamodellering Når vi bruker data fra flere tabeller er det viktig å definere en datamodell som muliggjør analyser på tvers av tabellene. Dette kurset gjennomgår grunnleggende teori om datamodellering sammen med en praktisk gjennomgang av hvordan man oppretter relasjoner og bygger en datamodell i Power BI. Bruke Power Query til å transformere data Power Query er et utrolig kraftig verktøy til å skreddersy data før de lastes inn i Power BI (ETL). Dette kurset gjør deltakerne kjent med hvordan Power BI og Power Query samhandler, og det blir demonstrert enkelte funksjoner i Power Query. Herunder rydding i data via navngivning, sletting og formattering av kolonner. Opprettelsen av en betinget kolonne blir også gjennomgått i kurset. DAX (Kalkulerte mål og kolonner) DAX er språket som brukes til å utføre spesifikke kalkulasjoner på data i Power BI. Dette er et språk hvor man kan utføre ganske komplekse utregninger, og kurset gir en introduksjon til dette på et nybegynnernivå. Det vil si at vi i kurset utarbeider mål og kolonner ved bruk av funksjoner som SUM, COUNT og CALCULATE. Datavisualisering, formattering og rapport oppsett Kurset gjennomgår flere av de vanlige visualiseringstypene som søylediagram, hjuldiagram og tabeller, og det blir vist formateringsmuligheter som valg av farge, kantlinje og akseformattering. Kurset legger også vekt på samhandling mellom visualiseringene, og det opprettes en interaktiv rapport med filtreringsvalg, ikoner og egendefinerte overskrifter. Navigasjon og bokmerker Kurset vil gjennomgå måter å navigere i rapporten på, samt den populære funksjonaliteten bookmarks som kan brukes til blant annet navigasjon og fjerning av anvendte filtre for å gjøre brukeropplevelsen av rapporten bedre.      [-]
Les mer
Virtuelt klasserom 4 dager 23 000 kr
Python is an object oriented rapid development language deployed in many scenarios in the modern world. [+]
COURSE OVERVIEW   This Python Programming 1 course is designed to give delegates the knowledge to develop and maintain Python scripts using the current version (V3) of Python. There are many similarities between Python V2 and Python V3. The skills gained on this course will allow the delegate to develop their own skills further using Python V2 or V3 to support the development and maintenance of scripts. The Python Programming 1 course comprises sessions dealing with syntax,variables and data types,operators and expressions,conditions and loops,functions,objects,collections,modules and packages,strings,pattern matching,exception handling,binary and text files,and databases. Exercises and examples are used throughout the course to give practical hands-on experience with the techniques covered. TARGET AUDIENCE The Python Programming 1 course course is aimed at those who want to improve their Python programming skills,and for developers/engineers who want to migrate to Python from another language,particularly those with little or no object-oriented knowledge. For those wishing to learn Python and have no previous knowledge of programming,they should look to attend our foundation course Introduction to Programming - Python. COURSE OBJECTIVES This course aims to provide the delegate with the knowledge to be able to produce Python scripts and applications that exploit all core elements of the language including variables,expressions,selection and iteration,functions,objects,collections,strings,modules,pattern matching,exception handling,I/O,and classes. COURSE CONTENT DAY 1 COURSE INTRODUCTION Administration and Course Materials Course Structure and Agenda Delegate and Trainer Introductions SESSION 1: GETTING STARTED About Python Python versions Python documentation Python runtimes Installing Python The REPL shell Python editors SESSION 2: PYTHON SCRIPTS & SYNTAX Script naming Comments Docstring Statements The backslash Code blocks Whitespace Console IO (to enable the writing of simple programs) A first Python program Script execution SESSION 3: VARIABLES & DATA TYPES Literals Identifiers Assignment Numbers (bool,int,float,complex) Binary,octal,and hexadecimal numbers Floating point accuracy Collections (str,list,tuple,set,dict) None Implicit and explicit type conversion (casting) The type function SESSION 4: OPERATORS & EXPRESSIONS Arithmetic Operators Assignment Operators Comparison Operators Logical Operators Membership Operators Bitwise Operators Identity Operators SESSION 5: CONDITIONS & LOOPS Conditional statements (if,elif,else) Nested conditional statements Short hand if/if else Python's alternative to the ternary operator Iterative statements (while,for,else) The range function Iterating over a list Break Continue Nested conditional/iterative statements COURSE CONTENTS - DAY 2 SESSION 6: FUNCTIONS Declaration Invocation Default values for parameters Named arguments args and kwargs Returning multiple values None returned Variable scope Masking and shadowing The pass keyword Recursive functions SESSION 7: OBJECTS AND CLASSES About objects Attributes and the dot notation The dir function Dunder attributes Mutability The id function Pass by reference Introduction to Classes Class Declaration and Instantiation Data attributes Methods Composition SESSION 8: LISTS About lists List syntax including slicing Getting and setting list elements Iterating over a list Checking for the presence of a value The len function List methods incl. append,insert,remove,pop,clear,copy,sort,reverse etc. The del keyword Appending to and combining lists List comprehension SESSION 9: TUPLES About tuples Tuple syntax Getting tuple elements including unpacking Iterating over a tuple Checking for the presence of a value The len function Appending to and combining tuples SESSION 10: SETS About Sets Dictionary syntax Creating,adding and removing set elements Iterating over a set Membership Testing Sorting Copying Set methods incl. union,intersection,difference,symmetric_difference etc. COURSE CONTENTS - DAY 3 SESSION 11: DICTIONARIES About dictionaries Dictionary syntax Getting and setting dictionary elements Iterating over a dictionary (keys,values,and items) Checking for the presence of a key The len function Dictionary methods incl. keys,values,items,get,pop,popitem,clear etc. The del keyword Dictionary comprehension SESSION 12: STRINGS About strings String syntax including slicing Escape characters Triple-quoted strings Concatenation Placeholders The format method Other methods e.g. endswith,find,join,lower,replace,split,startswith,strip,upper etc. A string as a list of bytes SESSION 13: MODULES & PACKAGES About modules Inbuilt modules math,random and platform the dir() and help() functions Creating and using modules the __pycache__ and the .pyc files The module search path Importing modules Namespaces Importing module objects The import wildcard Aliases Importing within a function Executable modules Reloading a module About packages Importing packaged modules Importing packaged module objects Package initialisation Subpackages Referencing objects in sibling packages The Standard Library Installing modules and packages using pip SESSION 14: PATTERN MATCHING About regular expressions Regular expression special characters Raw strings About the re module re module functions incl. match,search,findall,full match,split,sub   COURSE CONTENTS - DAY 4 SESSION 15: EXCEPTION HANDLING About exceptions and exception handling Handling exceptions (try,except,else,finally) Exception types The exception object Raising exceptions Custom exception types Built-in exceptions hierarchy SESSION 16: FILES & THE FILESYSTEM The open function Methods for seeking (seekable,seek) Methods for reading from a file (readable,read,readline,readlines) Iterating over a file Methods for writing to a file (writable,write,writelines) Introduction to context managers Text encoding schemes,codepoints,codespace ASCII and UNICODE (UTF schemes) UTF-8,binary and hexadecimal representations The ord() and chr() functions Binary files,bytes and bytearray I/O layered abstraction. About the os module os module functions incl. getcwd,listdir,mkdir,chdir,remove,rmdir etc. OSError numbers and the errno module SESSION 17: DATABASES The DB-API DP-API implementations Establishing a connection Creating a cursor Executing a query Fetching results Transactions Inserting,updating,and deleting records FOLLOW ON COURSES Python Programming 2  Data Analysis Python  Apache Web Server PHP Programming  PHP & MySQL for Web Development  PHP & MariaDB for Web Development  Perl Programming  Ruby Programming  Introduction to MySQL  Introduction to MariaDB [-]
Les mer
Virtuelt klasserom 5 dager 38 000 kr
(ISC)² and the Cloud Security Alliance (CSA) developed the Certified Cloud Security Professional (CCSP) credential to ensure that cloud security professionals have the re... [+]
COURSE OVERVIEW A CCSP applies information security expertise to a cloud computing environment and demonstrates competence in cloud security architecture, design, operations, and service orchestration. This professional competence is measured against a globally recognized body of knowledge. The CCSP is a standalone credential that complements and builds upon existing credentials and educational programs, including (ISC)²’s Certified Information Systems Security Professional (CISSP) and CSA’s Certificate of Cloud Security Knowledge (CCSK). As an (ISC)2 Official Training Provider, we use courseware developed by (ISC)² –creator of the CCSP CBK –to ensure your training is relevant and up-to-date. Our instructors are verified security experts who hold the CCSP and have completed intensive training to teach (ISC)² content. Please Note: An exam voucher is included with this course   TARGET AUDIENCE Experienced cybersecurity and IT/ICT professionals who are involved in transitioning to and maintaining cloud-basedsolutions and services. Roles include:• Cloud Architect• Chief Information Security Officer (CISO)• Chief Information Officer (CIO)• Chief Technology Officer (CTO)• Engineer/Developer/Manager• DevOps• Enterprise Architect• IT Contract Negotiator• IT Risk and Compliance Manager• Security Administrator• Security Analyst• Security Architect• Security Consultant• Security Engineer• Security Manager• Systems Architect• Systems Engineer• SecOps   COURSE OBJECTIVES After completing this course you should be able to:   Describe the physical and virtual components of and identify the principle technologies of cloud based systems Define the roles and responsibilities of customers, providers, partners, brokers and the various technical professionals that support cloud computing environments Identify and explain the five characteristics required to satisfy the NIST definition of cloud computing Differentiate between various as a Service delivery models and frameworks that are incorporated into the cloud computing reference architecture Discuss strategies for safeguarding data, classifying data, ensuring privacy, assuring compliance with regulatory agencies and working with authorities during legal investigations Contrast between forensic analysis in corporate data center and cloud computing environments Evaluate and implement the security controls necessary to ensure confidentiality, integrity and availability in cloud computing Identify and explain the six phases of the data lifecycle Explain strategies for protecting data at rest and data in motion Describe the role of encryption in protecting data and specific strategies for key management Compare a variety of cloud-based business continuity / disaster recovery strategies and select an appropriate solution to specific business requirements Contrast security aspects of Software Development Lifecycle (SDLC) in standard data center and cloud computing environments Describe how federated identity and access management solutions mitigate risks in cloud computing systems Conduct gap analysis between baseline and industry-standard best practices Develop Service Level Agreements (SLAs) for cloud computing environments Conduct risk assessments of existing and proposed cloud-based environments State the professional and ethical standards of (ISC)² and the Certified Cloud Security Professional COURSE CONTENT   Domain 1. Cloud Concepts, Architecture and Design Domain 2. Cloud Data Security Domain 3. Cloud Platform & Infrastructure Security Domain 4. Cloud Application Security Domain 5. Cloud Security Operations Domain 6. Legal, Risk and Compliance TEST CERTIFICATION Recommended as preparation for the following exam: (ISC)² - Certified Cloud Security Professional  Gaining this accreditation is not just about passing the exam, there are a number of other criterias that need to be met including 5  years of cumulative, paid work experience in  information technology, of which 3 years must be in information security and 1 year in 1 or more of the 6 domains of the CCSP CBK. Earning CSA’s CCSK certificate can be substituted for 1 year of experience in 1 or more of the 6 domains of the CCSP CBK. Earning (ISC)²’s CISSP credential can be substituted for the entire CCSP experience requirement. Full details can be found at https://www.isc2.org/Certifications/CCSP Those without the required experience can take the exam to become an Associate of (ISC)²  . The Associate of (ISC)² will then have 6 years to earn the 5 years required experience.   [-]
Les mer
1 dag 9 500 kr
AZ-2003: Deploy cloud-native apps using Azure Container Apps [+]
AZ-2003: Deploy cloud-native apps using Azure Container Apps [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til grunnleggende programmeringsprinsipper som variabler, datatyper, kontrollstrukturer (løkker og beslutninger), matriser (arrays), egendefinerte funksjoner... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: 6 AV 10 øvinger må være godkjent for å kunne gå opp til eksamen. Vurderingsform: En individuell 4-timers nettbasert hjemmeeksamen. Ansvarlig: Svend Andreas Horgen Eksamensdato: 17.12.13 / 20.05.14         Læremål: KUNNSKAPER:Kandidaten:- kan forklare hva et program er- kan redegjøre for grunnleggende byggestener i programmering, så som variabler, kontrollstrukturer, matriser (arrays) og funksjoner- kan analysere en spesiell problemstilling og planlegge hvordan den kan løses generelt med programkode FERDIGHETER:Kandidaten:- kan bruke et .NET-basert utviklingsmiljø i kodeutvikling- kan lage funksjonelle brukergrensesnitt- kan identifisere feil i programkode- kan lage strukturert programkode som løser enkle problemstillinger- kan anvende innebygde funksjoner fra .NET-rammeverket i egen kode GENERELL KOMPETANSE:Kandidaten:- er bevisst på viktigheten av å eliminere feilsituasjoner Innhold:Introduksjon til grunnleggende programmeringsprinsipper som variabler, datatyper, kontrollstrukturer (løkker og beslutninger), matriser (arrays), egendefinerte funksjoner og innebyde funksjoner. Utforme brukergrensesnitt som er fine å se på og enkle å bruke. Feilhåndtering. Strukturere og planlegge koden på en god måte.Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Programmering i Visual Basic 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
Analyse med Pivottabeller og Power Pivot [+]
Dette er et spesialkurs som fokuserer på analyse av store datasett ved hjelp av Pivottabell og Power Pivot, samt formelbasert analyse. Målet er å få frem styrker og svakheter ved de forskjellige metodene, og å se litt på hvilke forutsetninger som påvirker valg av løsning. For å ha utbytte av dette kurser forutsettes at man er vant bruker av Excel. Pivot og Power Pivot blir gjennomgått fra begynnelsen, så man trenger ikke være kjent med disse verktøyene fra før. Betingede formler kan være ganske krevende, så det er en fordel å være litt trygg på formelskriving. I en kurssituasjon blir selvsagt kurset tilpasset deltagernes nivå og forkunnskaper. I kurset gjennomgås bl.a.: Kontroll/gjennomgang av en del sentral funksjonalitet – bl.a. absolutte, relative og blandede referanser. Sammendrag av data fra flere ark i samme eller flere arbeidsbøker, bl.a. gjennomgående summering og tabulering v.hj.a. INDIREKTE-funksjonen. Betingende sammendrag v.hj.a. matriseformler og funksjoner Modifisere datasett med FINN.RAD, FINN.KOLONNE, matriseformler og andre teknikker Pivottabell, hvor vi bl.a. ser på: Sette sammen data fra forskjellige grunnlag før pivotering Vise dataserie på forskjellige måter (sum, gjennomsnitt, prosentfordelt, etc.) Hvordan foreta beregninger rett i pivottabellen, f.ex. inntekter – kostnader = resultat Pivottabell hvor datagrunnlaget er oppdelt i flere forskjellige Pivottabell rett mot en spørring i en database Power Pivot Forskjeller (og likheter) med «vanlig» Pivottabell Når forlater vi den vanlige pivottabellen til fordel for Power Pivot? Fordeler og ulemper med Pivot og Power Pivot. Lage Power Pivot-tabell med data fra flere forskjellige datasett. [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Oslo 5 dager 27 500 kr
25 Aug
15 Sep
15 Sep
MD-102 : Microsoft 365 Endpoint Administrator [+]
MD-102 : Microsoft 365 Endpoint Administrator [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu er en komplett PDF-løsning, som lar deg opprette og redigere PDF-dokumenter og tegninger. Videre kan du markere opp og gjøre mengdeuttak fra tegningene, sam... [+]
Sammenligne tegninger, også i batch Hvordan standardisere designgjennomgangen? Opprette tilpassede markeringsverktøy i Tool Chest Bruk av Markeringslisten for sporing, kommentering og status på markeringer Samhandling i sanntid mellom forskjellige aktører under designgjennomgangen i Studio Sessions [-]
Les mer