IT-kurs
Du har valgt: København
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i København ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 1 dag 5 900 kr
Hvordan fylle rollen som personvernombud, og hva må du kunne. Ett kurs for deg som DPO og vil bli bedriftens kompetanse person på GDPR [+]
Personvernforordningen / General Data Protection Regulation (GDPR) Vi går gjennom de deler du må ha kompetanse om, og du får fyldig kursmateriale med deg hjem, slik at du enklere kan mester fagområdet etter kurset. Men på ettdagskurs er det ikke dybdegejnnomgang av områder som DPIA, teknologi og prosess rundt GAP planer. Du får alikevel med deg materiale så du kan lese etterpå. Hva er formålet med forordninga og hvordan forordningen er strukturert. Vi går gjennom  tilsynsmyndighet og hvilke innvirkninger den loven har på Norge, EU og andre land.  Du får kompetanse om hovedpunkter i forordningen med de viktige nøkkelkonsepter, kategorier for personlig informasjon og prinsipper for databeskyttelse. Den registrertes rettigheter og hvordan analyser utfordringer og problemer En viktig kompetanse som mange ikke kjenner godt nok er hvilke roller, forpliktelser og behandlingsaktiviteter som må mestres, så vi ser på personvernombudets betegnelser  Konsekvensanalyse av databeskyttelse og personvernombudet Behandlingsaktiviteter og personvernombudet  Kontrollers ansvar Personvernombudet sitt ansvarRegistrering av behandlingsaktiviteterSamarbeid med tilsynsmyndighetHvordan starte program for å etterleve personvernforordningenHvem må forholde seg til personvernforordningenMetoder og tilnærmingForbered program for personvernforordningenHvordan avdekke mangler  og i dentifiser strategiske målLedelsens ansvar og godkjenning [-]
Les mer
2 dager 14 900 kr
ISO/IEC 27701 Foundation [+]
ISO/IEC 27701 Foundation [-]
Les mer
Sentrum 3 dager 12 300 kr
Trenger du å bygge opp store og avanserte regneark? Ønsker du å lage rapporter og beregninger på store tallgrunnlag? Vil du finne ut hvordan du kan effektivisere arbe... [+]
Trenger du å bygge opp store og avanserte regneark? Ønsker du å lage rapporter og beregninger på store tallgrunnlag? Vil du finne ut hvordan du kan effektivisere arbeidet ditt i Excel? Ønsker du å lære de første stegene mot automatiserte rapporter? Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Generelt om regneark Om regneark og infrastruktur Bruke tastatur og hurtigtaster effektiv Absolutte referanser og definerte navn   Funksjoner Mer om funksjoner, hvis, antall.hvis, summer.hvis.sett Lær om "må ha funksjonen" Finn.rad [Vlookup] Andre funksjoner for spesielle oppgaver   Avansert formatering Spesiell formatering – dato, tekst og egendefinert Betinget formatering og cellestiler   Dag 2    Lister og tabeller Viktige regler og råd Bruk av autofilter og sortering Tabellfunksjonalitet Validering ved inntasting Beregninger av store datamengder via gode funksjoner   Pivottabell Hva er pivottabell og hvordan lage raske og enkle rapporter Utvidede muligheter i Pivot som grupperinger, vis verdier som og slicer   Dag 3   Metoder for dataimport Direkte import fra database   Innføring til makro Spille inn /registrere makro Ord/uttrykk og VBA editor   Datavask Slette tommer rader, fylle tomme celler Bruk av funksjoner for å klargjøre datagrunnlag Identifisere og håndtere avvik i grunnlag   Alternative temaer (hvis tid) Tips til diagrammer Hva hvis analyse Konsolidering   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Oslo Bergen 3 dager 20 900 kr
10 Sep
10 Sep
22 Sep
Implementing REST Services using Web API [+]
Implementing REST Services using Web API [-]
Les mer
Nettkurs 5 timer 549 kr
I dette kurset lærer du å annonsere med Google Ads slik at du blir synlig i det øyeblikket kunden søker etter ditt produkt eller tjeneste. Vi lærer deg å opprette og konf... [+]
Bli en ekspert i online annonsering med Google Ads gjennom dette dyptgående kurset ledet av Espen Faugstad, gründer av Utdannet.no og en veteran med over 10 års erfaring i digital markedsføring. Dette kurset er skreddersydd for alle, fra de som aldri har brukt Google Ads før, til de som har erfaring men ønsker å heve sin kompetanse til ekspertnivå. Kurset starter med grunnleggende om hvordan du oppretter og konfigurerer en Google Ads-konto. Du vil lære å installere Google Ads-taggen og konverteringssporing, utføre målgruppe- og søkeordsanalyse, og forstå hvordan Google Ads-auksjonen fungerer. Kurset dekker også hvordan du oppretter og optimaliserer ulike typer annonser, inkludert tekst-, bilde-, video- og remarketingannonser. Med en praktisk tilnærming vil kurset guide deg gjennom prosessen med å sette opp effektive kampanjer, forstå auksjonssystemet, og bruke analyseverktøy for å forbedre dine resultater. Ved kursets slutt vil du ha tilegnet deg den kunnskapen du trenger for å mestre Google Ads og drive effektiv annonsering på vegne av deg selv eller dine klienter.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Målgruppe Kapittel 3: Søkeord Kapittel 4: Auksjon Kapittel 5: Tekstannonser Kapittel 6: Bildeannonser Kapittel 7: Videoannonser Kapittel 8: Remarketing Kapittel 9: Analyse Kapittel 10: Avslutning   Varighet: 5 timer og 12 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo Bergen 2 dager 12 900 kr
03 Sep
08 Sep
08 Sep
Automatisering i Microsoft 365 med Power Automate [+]
Automatisering i Microsoft 365 med Power Automate [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Generell nettverkssikkerhet. Hvordan planlegge, organisere og sette sikkerhet i små og store nettverk. Brannmurer, VPN, IDS/IPS. Sikkerhet rundt epost, trådløse nett og r... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Faget «Datakommunikasjon» eller tilsvarende grunnleggende fag. (TCP/IP forutsettes kjent). Faget «Nettverksteknologi» Innleveringer: Øvinger: 8 av 12 må være godkjent. Øvingene må dekke en bred del av pensum. Vurderingsform: Skriftlig, individuell, 3 timer, Ansvarlig: Helge Hafting Eksamensdato: 04.12.13 / 07.05.14         Læremål: KUNNSKAPER:Kandidaten:- kan forklare en del protokollbaserte farer/angrep i kablede og trådløse nett- kan gjøre rede for mottiltak mot angrepene over- kan gjøre rede for andre farer og mottiltak, som fysiske sikringstiltak og «social engineering»- kan gjøre rede for og planlegge bruk av vanlige sikringstiltak som IDS, IPS, VPN og proxyer FERDIGHETER:Kandidaten kan:- sette i drift et VPN- installere brannmur- Observere nettverkstrafikk med pakkesniffer GENERELL KOMPETANSE:Kandidaten:- kan granske sikkerheten i et nettverk, og velge passende tiltak.Innhold:Generell nettverkssikkerhet. Hvordan planlegge, organisere og sette sikkerhet i små og store nettverk. Brannmurer, VPN, IDS/IPS. Sikkerhet rundt epost, trådløse nett og rutere. En del vanlige angrep, og mottiltak.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Nettverkssikkerhet 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Oslo 5 dager 27 900 kr
03 Nov
03 Nov
ISO 27032 Lead Cybersecurity Manager [+]
ISO 27032 Lead Cybersecurity Manager [-]
Les mer
Oslo 5 dager 26 900 kr
08 Sep
08 Sep
01 Dec
Modern C++20 Development [+]
Modern C++20 Development [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 3 dager 20 900 kr
08 Oct
08 Oct
17 Dec
Python Data Science [+]
Python Data Science [-]
Les mer
Oslo 4 dager 23 900 kr
Angular 14 Development [+]
Angular 14 Development [-]
Les mer