IT-kurs
Du har valgt: Katrineholm kommune
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Katrineholm kommune ) i IT-kurs
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Oslo 2 dager 16 900 kr
11 Sep
11 Sep
08 Dec
SAFe® 6.0 for Teams [+]
SAFe® for Teams Certification [-]
Les mer
Virtuelt klasserom 2 dager 8 900 kr
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan ... [+]
Kursinstruktør   Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer. Kursinstruktør   Jonny Austad Jonny Austad er utdannet som Adjunkt og har jobbet som lærer og instruktør siden 1989. Han har dessuten jobbet mye med support og drifting av nettverk og vet som oftest hva som er vanlige problemer ute i bedriftene. Han var den første Datakort-læreren i landet (høsten 1997), og har Office-pakken med spesielt Excel som sitt hjertebarn. Jonny er en meget hyggelig og utadvendt person som elsker å undervise med smarte løsninger på problemer samt vise smarte tips og triks i de ulike programmene. Kursinnhold Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Bruk av stiler gir profesjonelle og flotte dokumenter. Lær å lage innholdsfortegnelse, stikkordliste og figurliste automatisk. Profesjonelt sideoppsett med spalter, marger, sidefarger, sidekantlinjer og dokumenttemaer. Auto korrektur, byggeblokker, egenskaper og felt gjør det enklere å gjenbruke tekst. Flere deldokumenter kan samles i et hoved dokument ved hjelp av hoveddokumentvisning. I lange dokumenter kan du ha uliketopp- og bunntekster og selv bestemme side nummerering. For å friske opp et dokument kan du sette inn utklipp, figurer, SmartArt og diagram. Med tekstbokser kan du presentere sitater eller sammendrag fra dokumentet. Tabeller kan brukes til å presentere informasjon på en oversiktlig måte men kan også sorteres og inneholde beregninger. Maler brukes for å sikre at dokumenter av samme type får en ensartet formatering. Felt, innholdskontroller og skjemakontroller kan settes inn for å effektivisere bruken av maler. Med makroer kan du effektivisere avanserte oppgaver som består av serie med handlinger. Med fletting kan du masseprodusere brev, konvolutter, etiketter og e-post. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Word erfaring som de gjerne deler med deg! Meld deg på Word-kurs allerede i dag og sikre deg plass! Lær deg: behandling av stiler rask og enkel opprettelse av innholdsfortegnelse sette inn forsider samarbeid om felles dokument spalter beregninger i tabeller innsetting av diagram sett inn bilder og bildetekst grafikk og tegning maler og skjema bruk av makroer integrasjon med Excel og andre programmer [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course covers three central elements of Microsoft 365 enterprise administration – Microsoft 365 security management, Microsoft 365 compliance management, and Microso... [+]
 In Microsoft 365 security management, you will examine all the common types of threat vectors and data breaches facing organizations today, and you will learn how Microsoft 365’s security solutions address these security threats. Global Knowledge will introduce you to the Microsoft Secure Score, as well as to Azure Active Directory Identity Protection. You will then learn how to manage the Microsoft 365 security services, including Exchange Online Protection, Advanced Threat Protection, Safe Attachments, and Safe Links. Finally, you will be introduced to the various reports that monitor your security health. You will then transition from security services to threat intelligence; specifically, using the Security Dashboard and Advanced Threat Analytics to stay ahead of potential security breaches. TARGET AUDIENCE This course is designed for persons who are aspiring to the Microsoft 365 Enterprise Admin role and have completed one of the Microsoft 365 work load administrator certification paths. COURSE OBJECTIVES By actively participating in this course, you will learn about the following: Microsoft 365 Security Metrics Microsoft 365 Security Services Microsoft 365 Threat Intelligence Data Governance in Microsoft 365 Archiving and Retention in Office 365 Data Governance in Microsoft 365 Intelligence Search and Investigations Device Management Windows 10 Deployment Strategies Mobile Device Management COURSE CONTENT Module 1: Introduction to Microsoft 365 Security Metrics Threat Vectors and Data Breaches Security Solutions in Microsoft 365 Introduction to the Secure Score Introduction to Azure Active Directory Identity Protection Module 2: Managing Your Microsoft 365 Security Services Introduction to Exchange Online Protection Introduction to Advanced Threat Protection Managing Safe Attachments Managing Safe Links Monitoring and Reports Module 3: Lab 1 - Manage Microsoft 365 Security Services Exercise 1 - Set up a Microsoft 365 Trial Tenant Exercise 2 - Implement an ATP Safe Links policy and Safe Attachment policy Module 4: Microsoft 365 Threat Intelligence Overview of Microsoft 365 Threat Intelligence Using the Security Dashboard Configuring Advanced Threat Analytics Implementing Your Cloud Application Security Module 5: Lab 2 - Implement Alert Notifications Using the Security Dashboard Exercise 1 - Prepare for implementing Alert Policies Exercise 2 - Implement Security Alert Notifications Exercise 3 - Implement Group Alerts Exercise 4 - Implement eDiscovery Alerts Module 6: Introduction to Data Governance in Microsoft 365 Introduction to Archiving in Microsoft 365 Introduction to Retention in Microsoft 365 Introduction to Information Rights Management Introduction to Secure Multipurpose Internet Mail Extension Introduction to Office 365 Message Encryption Introduction to Data Loss Prevention Module 7: Archiving and Retention in Office 365 In-Place Records Management in SharePoint Archiving and Retention in Exchange Retention Policies in the SCC Module 8: Lab 3 - Implement Archiving and Retention Exercise 1 - Initialize Compliance in Your Organization Exercise 2 - Configure Retention Tags and Policies Exercise 3 - Implement Retention Policies Module 9: Implementing Data Governance in Microsoft 365 Intelligence Planning Your Security and Complaince Needs Building Ethical Walls in Exchange Online Creating a Simple DLP Policy from a Built-in Template Creating a Custom DLP Policy Creating a DLP Policy to Protect Documents Working with Policy Tips Module 10: Lab 4 - Implement DLP Policies Exercise 1 - Manage DLP Policies Exercise 2 - Test MRM and DLP Policies Module 11: Managing Data Governance in Microsoft 365 Managing Retention in Email Troubleshooting Data Governance Implementing Azure Information Protection Implementing Advanced Features of AIP Implementing Windows Information Protection Module 12: Lab 5 - Implement AIP and WIP Exercise 1 - Implement Azure Information Protection Exercise 2 - Implement Windows Information Protection Module 13: Managing Search and Investigations Searching for Content in the Security and Compliance Center Auditing Log Investigations Managing Advanced eDiscovery Module 14: Lab 6 - Manage Search and Investigations Exercise 1 - Investigate Your Microsoft 365 Data Exercise 2 - Configure and Deploy a Data Subject Request Module 15: Planning for Device Management Introduction to Co-management Preparing Your Windows 10 Devices for Co-management Transitioning from Configuration Manager to Intune Introduction to Microsoft Store for Business Planning for Mobile Application Management Module 16: Lab 7 - Implement the Microsoft Store for Business Exercise 1 - Configure the Microsoft Store for Business Exercise 2 - Manage the Microsoft Store for Business Module 17: Planning Your Windows 10 Deployment Strategy Windows 10 Deployment Scenarios Implementing Windows Autopilot Planning Your Windows 10 Subscription Activation Strategy Resolving Windows 10 Upgrade Errors Introduction to Windows Analytics Module 18: Implementing Mobile Device Management Planning Mobile Device Management Deploying Mobile Device Management Enrolling Devices to MDM Managing Device Compliance Module 19: Lab 8 - Manage Devices with Intune Exercise 1 - Enable Device Management Exercise 2 - Configure Azure AD for Intune Exercise 3 - Create Intune Policies Exercise 4 - Enroll a Windows 10 Device Exercise 5 - Manage and Monitor a Device in Intune TEST CERTIFICATION This course helps you to prepare for exam MS101. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Installering og bruk av valgt databaseverktøy (MySQL). Flerbrukerproblematikk og databaseadministrasjon (DBA) i SQL. Bruk av SQL og innebygd funksjonalitet i databaseverk... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: IINI1003 Databaser eller tilsvarende forhåndskunnskaper Innleveringer: Tilsvarende 8 obligatoriske øvinger må være godkjent før endelig karakter settes. Personlig veileder: ja Vurderingsform: Individuell netteksamen, 2 timer. Ansvarlig: Tore Mallaug Eksamensdato: 13.12.13 / 16.05.14         Læremål: KUNNSKAPERKandidaten:- kjenner sentrale begreper innen flerbrukerproblematikk og databaseadministrasjon, og kan gjøre rede for disse- forstår hvordan innebygd funksjonalitet i relasjonsdatabasesystem kan utnyttes i en klient/tjener-arkitektur- vet hvordan ulike typer data kan lagres og representeres i et databasesystem; tekst, XML og temporale data.- kan gjøre rede for hvordan NoSQL-løsninger er et alternativ til relasjonsdatabaser i Web-løsninger FERDIGHETERKandidaten:- kan administrere en flerbrukerdatabase med SQL-kommandoer i et valgt databaseverktøy- lager sin egen (mest mulig normaliserte) relasjonsdatabase med nøkler og referanseintegritet som ikke bare lagrer strukturelle data, men også tekst og semi-strukturelle data (XML)- kan utnytte databaseverktøyet funksjonalitet til utvidet bruk av SQL i en klient/tjener-sammenheng for å støtte opp rundt applikasjoner mot databasen- kan utnytte databaseverktøyet til å lagre temporale data- kan utføre SQL-spørringer mot ulike typer data i en database GENERELL KOMPETANSEKandidaten:- viser en bevisst holdning til lagring og representasjon av ulike typer data i et informasjonssystem- viser en bevisst holdning til databasedesign for å unngå unødvendig dobbeltlagring av data i en database Innhold:Installering og bruk av valgt databaseverktøy (MySQL). Flerbrukerproblematikk og databaseadministrasjon (DBA) i SQL. Bruk av SQL og innebygd funksjonalitet i databaseverktøyet (bruk av funksjoner/prosedyrer og triggere). Utnytte databaseverktøyet i en klient/tjener -arkitektur. Se på forholdet database - applikasjon. Lagring av ulike typer data; tekst, XML (semi-strukturelle data), dato/tid (temporale data). Enkel bruk av NoSQL-løsning. MySQL blir brukt i eksempler, men noen utfyllende eksempler i Oracle kan forekomme i lærestoffet.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Databaser 2 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
5 dager 39 000 kr
11 Aug
15 Sep
13 Oct
RH124: Red Hat System Administration I - Linux (RHEL) [+]
RH124: Red Hat System Administration I - Linux (RHEL) [-]
Les mer
Nettkurs 2 timer 1 990 kr
PowerPoint webinar for deg som skal lage eller endre organisasjonens PowerPoint-maler. Profesjonelt utformede maler er et viktig utgangspunkt for å lage profesjonelle pr.... [+]
Instruktørbasert opplæring:   PowerPoint nivå 4 - Utvikling av maler Lysbildemal Generelt om maloppsettet Flere lysbildemaler i samme presentasjon Definere temafarger Bytte lysbildemal i en presentasjon Gjøre maler tilgjengelig for "alle" Lysbildeoppsett Tilpasse eksisterende oppsett Lage egendefinerte lysbildeoppsett Kontrollere rekkefølgen på plassholdere   3 gode grunner til å delta 1. Få forståelse av hvordan malen fungerer 2. Lær hvordan temafarger styrer utseende 3. Se hvordan du kan tilpasse lysbildeoppsett, og hvordan lage egne [-]
Les mer
Virtuelt klasserom 2 timer 1 990 kr
Power BI – Profesjonelle rapporter [+]
Power BI – Profesjonelle rapporter [-]
Les mer
Nettkurs 1 time 549 kr
Adobe Bridge er et program som gjør det enkelt å importere og organisere digitale bilder. Programmet er en del av Creative Cloud-pakken som du kan abonnere på, og verktøy... [+]
Utforsk Adobe Bridge til fulle med kurset "Bridge: Komplett" ledet av Espen Faugstad hos Utdannet.no. Adobe Bridge er et kraftig verktøy for å importere, organisere og vise digitale bilder, og er en viktig del av Creative Cloud-pakken. Dette kurset er designet for alle som ønsker å lære Adobe Bridge fra grunnen av, og ingen forkunnskaper er nødvendig. Du vil lære hvordan du effektivt importerer og organiserer bilder, rangerer og presenterer dem. Kurset vil gi deg en dyp forståelse av hvordan forskjellige paneler i Bridge, som Content-panelet, Filter-panelet, Collections-panelet, og Metadata-panelet, fungerer i praksis. Gjennom kurset vil du få praktisk erfaring med å bruke Bridge for å forbedre din arbeidsflyt og bildehåndtering. Ved slutten av kurset vil du ha oppnådd en omfattende forståelse av Adobe Bridge, noe som gjør deg i stand til å bruke programmet effektivt, enten du jobber alene eller sammen med andre Adobe-programmer som Photoshop.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Grunnleggende Kapittel 3: Viderekommen Kapittel 4: Avslutning   Varighet: 1 time   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
1 dag 9 500 kr
01 Sep
03 Nov
DP-3007: Train and deploy a machine learning model with Azure Machine Learning [+]
DP-3007: Train and deploy a machine learning model with Azure Machine Learning [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
05 Sep
24 Oct
05 Dec
I dette kurset konsentrerer vi oss om oppslagsfunksjonene FINN.RAD, FINN.KOLONNE OG XOPPSLAG og viser avanserte eksempler. Vi tar også for oss noen eksempler på bruk av f... [+]
Kursinnhold FINN.RAD() FINN.KOLONNE() XOPPSLAG() – den nye oppslagsfunksjonen. Super funksjonalitet INDEKS() / SAMMENLIGNE() [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excel for Selgere - elæringskurs [+]
Excel for Selgere - elæringskurs [-]
Les mer
Oslo 2 dager 16 900 kr
11 Sep
11 Sep
11 Dec
UX Foundation [+]
UX Foundation [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer