IT-kurs
Du har valgt: Katrineholm kommune
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Katrineholm kommune ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to provide accurate and reliable information about the configuration of services and configuration support items when and where it is needed. [+]
Understand the purpose and key concepts of Service Configuration Management, including its role in maintaining accurate and reliable information about configuration items (CIs) within the IT infrastructure. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content Mobile-optimised Practical exercises   Exam: 20 questions Multiple Choice 30 Minutes Closed book Pass Mark: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og ... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Studenten bør kunne installere linux, og kjenne til enkle linuxkommandoer som f.eks. «ls». Nybegynnere uten erfaring med linux anbefales å starte med emnet Praktisk Linux, som gir disse forkunnskapene. Innleveringer: Øvinger: 8 av 12 må være godkjent. Vurderingsform: Skriftlig eksamen 3t (60%) og mappe (40%), der alle øvinger er med i mappevurderingen. Ansvarlig: Helge Hafting Eksamensdato: 18.12.13 / 27.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten:- kan legge planer for en ny tjenermaskin- kan forklare bruk av ulike filsystemer, kvoter og aksesskontrollister FERDIGHETER:Kandidaten:- kan installere linux og vanlig tjenerprogramvare- kan vedlikeholde oppsettet på en tjenermaskin, som regel ved å tilpasse konfigurasjonsfiler- kan lete opp informasjon på nettet, for å løse drifts- og installasjonsproblemer GENERELL KOMPETANSE:Kandidaten:- kan vurdere linuxprogramvare for å dekke en organisasjons behov for tjenester Innhold:Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og automasjon.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Linux systemdrift 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Majorstuen 3 dager 12 500 kr
08 Sep
13 Oct
24 Nov
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan du ut... [+]
Etter 3 dager med kurs vil du bli løftet opp på et helt nytt nivå. Du vil kunne kvalitetssikre ditt arbeid og bruke mindre tid på å løse dine arbeidsoppgaver. Du vil garantert merke stor forskjell når du er tilbake på jobb! Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Endre innstillingene i Excel for å få brukergrensesnittet du ønsker Kvalitetssikre regnearkene dine og unngå feil input gjennom validering Beskytt regneark mot å bli ødelagt ved feil bruk og feil lagring Betinget formatering gjør det enkelt å følge med sentrale verdier i regnearket. Bruk flere arbeidsbøker samtidig og utvid mulighetene dine Sortering og filtrering gjør arbeidet med lister og tabeller enkelt og effektivt. Bruk av funksjoner for å dra ut ønsket data fra en celle eller område Pivottabeller og pivotdiagram kan brukes for å trekke ut og vise data på en oversiktlig måte. Verktøy for analyse av data gjør deg i stand til å løse avanserte hva skjer hvis-spørsmål. Legg inn knapper/kontroller for å gjøre det enda lettere å bruke regnearkene dine Deling av arbeidsbøker gjør det lett å samarbeide med andre kollegaer. Innspilling av makroer sikrer konsekvent og korrekt databehandling Lag makroer ved å skrive programkoden selv (VBA) I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag. Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Excel erfaring som de gjerne deler med deg! «Fikk veldig mye ny kunnskap på relativt kort tid. Har blitt mye mer bevisst på hva Excel kan brukes til og det er mye mer enn jeg først trodde. Veldig god kursleder» Maria Amundsen, Jernbaneverkets Fellestjenester Kursinnhold Slik kan du kvalitetssikre regnearkmodellene dine - Effektiv og nyttig validering sikrer mot feil input- Beskytt regneark og bok mot å bli ødelagt ved feil bruk Lær deg å bygge gode og effektive formler med - Riktig bruk av cellereferanser- Navning av celler- Nyttige tekstformler- Smarte, innebyggede funksjoner- Å lage egne funksjoner for mer kompliserte formler som du ofte anvender Lær deg de smarte triksene du trenger til å arbeide med flere ark - Enkel kopiering av ark- Formler som summerer data fra flere ark- Hvordan du kan spare tid ved å arbeide på flere ark samtidig Slik bruker du flere Excel-bøker samtidig og utvider mulighetene dine - Riktig bruk av cellereferanser til annen bok, lær om fallgrubene og hvordan du unngår dem- Lær hvordan du setter opp og bruker hyperkoblinger til å hoppe mellom deler av prosjektet ditt- Lær om hvordan du lager dynamiske koblinger mellom Excel og andre programmer Smart bruk av Excel-maler gjør deg mer effektiv - Lær å lage, bruke og endre maler Når du vil koble Excel til bedriftens database-system - Forstå grunnprinsippene for en database- Lær hvordan du automatisk trekker data ut fra databasen og får dem skrevet inn i regnearket Slik analyserer du store datamengder på en effektiv og enkel måte - Lær deg riktig og god bruk av verktøyet Pivot- Lag sammendrag av dataene dine akkurat slik du ønsker- Lag pivot-tabeller basert direkte på bedriftens database Lær deg de nyttige og gode verktøyene for behandling av lister i Excel - Bruk av det nye, flotte verktøyet ’Tabell’- Forskjellige måter å sortere lister på- Hvordan du bruker filter for å plukke ut poster fra en liste- Hvordan du kan sette inn mellomsummer i listene dine Slik kan du forbedre brukervennligheten av regnearkene dine - Sett opp smarte kontroller som gjør det lettere for ukyndige brukere å anvende regneark-applikasjonene din- Lær deg å bruke validering til innskriving av lange tekster i celler Ta det store skrittet: lær deg effektiv og riktig makroprogrammering - Bruk av makroer kan gjøre dine Excel-applikasjoner raskere, enklere å bruke og sikrere- Makroinnspilleren hjelper deg til å lage flotte, nyttige og effektive makroer uten at du trenger å kunne programmering- Gå videre: lær deg også å forstå hemmeligheten ved programmering slik at du kan skrive programkoden selv. [-]
Les mer
Nettstudie 1 semester 4 980 kr
På forespørsel
Utviklingsprosesser. Modellering. UML. Verktøy. Objektorientert analyse Objektorientert design. Bruk av arkitektoniske stiler og design mønstre. Implementasjon og test. [+]
Studieår: 2013-2014   Gjennomføring: Høst Antall studiepoeng: 5.0 Forutsetninger: Erfaring fra et objektorientert programmeringsspråk, kjennskap til prosjektarbeid Innleveringer: Innleverte øvinger. Det blir gitt 10 øvinger, 8 må være godkjent for å kunne gå opp til eksamen. Personlig veileder: ja Vurderingsform: 4 timer skriftlig eksamen. Ansvarlig: Tore Berg Hansen Eksamensdato: 12.12.13         Læremål: Forventet læringsutbytte:Etter å ha gjennomført emnet Objektorientert systemutvikling skal studenten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan definere, gjenkjenne og forklare de grunnleggende konsepter for utvikling av store programvaresystemer basert på det objektorienterte paradigme- argumentere for betydningen av å følge en prosessmodell- argumentere for fordelene med smidige prosesser- argumentere for modellbasert utvikling- beskrive modellene som brukes i objektorientert systemutvikling og hvordan de henger sammen- forklare begrepene arkitektoniske stiler og designmønstre FERDIGHETER:Kandidaten:- kan demonstrere den systematiske gangen fra krav, via arkitektonisk og detaljert design, til ferdig kodet og implementert system GENERELL KOMPETANSE:Kandidaten:- er klar over at utvikling av store programvaresystemer er ingeniørarbeid- er seg bevisst at utvikling av komplekse programvaresystemer krever koordinert innsats av et velfungerende team som følger en definert, smidig prosess- er opptatt av tett kontakt med alle interessenter for å oppnå et godt resultat Innhold:Utviklingsprosesser. Modellering. UML. Verktøy. Objektorientert analyse Objektorientert design. Bruk av arkitektoniske stiler og design mønstre. Implementasjon og test.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Dette faget går: Høst 2013    Fag Objektorientert systemutvikling 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt eller personlig 3 dager 12 400 kr
Utvikle 3D-modeller og lage realistiske bilder og animasjoner av disse. [+]
AutoCAD 3D introduksjonskurs: Deltagerne skal kunne skille mellom ulike modelltyper, og kjenne til grunnprinsipper for 3D-modellering og bruk av koordinatsystem, samt beherske bruk av betraktningsvinkler og skjermnavigering. Koordinatsystemer Angivelse av punkter i rommet Solid modellering Surface modellering Mesh modellering Sette opp Layout i paperspace, projeksjoner og snitt Lagstruktur og lagdefinisjon, farger, linjetyper, målsetting Lyssetting, naturlig sollys og lokale lyskilder Knytte materialer til objekt eller til lag Renderfunksjoner Animasjon og video [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excel for Selgere - elæringskurs [+]
Excel for Selgere - elæringskurs [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
Majorstuen 2 dager 7 900 kr
21 Aug
17 Sep
29 Oct
På dette kurset får du en god oversikt over mulighetene i Excel. Du får nyttige tips som forenkler arbeidshverdagen din, og lærer de viktigste funksjonene for å komme i g... [+]
Bruker du mye tid i Excel på å få gjort enkle arbeidsoppgaver? Kommer det til stadighet prosent og dato i celler hvor du vil ha vanlige tall? Blir en formel ødelagt når du flytter den? Er det vanskelig å lage det diagrammet du ønsker? Blir ikke utskriftene dine slik du ønsker? Dette er vanlige problemstillinger mange sliter med og som blir borte etter endt kurs! På kun 2 dager vil du mestre de vanligste formler og funksjoner du trenger i din arbeidsdag. Du lærer gode rutiner og hurtigtastene du trenger for å kunne arbeide raskt og effektivt. Du vil kunne bygge alt fra enkle til mer avanserte modeller og vil føle deg trygg på at modellen din virker og gir rett resultat. Du vil også få en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert!   Kursholderne har mer enn 20 års Excel erfaring som de gjerne deler med deg!   Kurset passer for deg med liten erfaring og som ønsker å lære Excel fra grunnen av. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Meld deg på Excel-kurs allerede i dag og sikre deg plass!   Krav til forkunnskaper Grunnleggende kunnskaper i Windows.   Kursinnhold Redigering Merking Sletting Angre muligheter Flytting og kopiering Innsetting og sletting Formler Bruk av formler Autofyll Cellereferanser Formatering Hva er formatering? Kolonnebredde og radhøyde Tallformatering Skriftformatering Justering av celleinnhold Kantlinjer og fyllfarger Betinget formatering Funksjoner Bruk av funksjoner Summering Minst, størst, antall og gjennomsnitt Hvis-funksjonen Betinget summering Diagram Utforming av diagram Diagramtyper Flere regneark Arbeid med regneark Innsetting og sletting av regneark Flytting og kopiering av regneark Referering til andre regneark Enkle formler på tvers av ark Vindus håndtering Lister og tabeller Sortering Tabeller Filtrering Deling og frysing av vindu   [-]
Les mer