IT-kurs
Du har valgt: Klepp Stasjon
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Klepp Stasjon ) i IT-kurs
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Virtuelt klasserom 2 timer 1 990 kr
Excel – Du trodde du kunne det? [+]
Excel – Du trodde du kunne det? [-]
Les mer
Oslo Bergen 3 dager 20 900 kr
10 Sep
10 Sep
22 Sep
Implementing REST Services using Web API [+]
Implementing REST Services using Web API [-]
Les mer
Virtuelt klasserom 4 dager 17 200 kr
Kurset passer for deg som ønsker å komme igang med Java-programmering, forstå grunnleggende programmeringskonsepter, lage enkle programmer og forstå Java-kode skrevet av ... [+]
Dette er et 4-dagers introduksjonskurs i Java-programmering. Kurset passer for deg som ønsker å komme igang med Java-programmering, forstå grunnleggende programmeringskonsepter, lage enkle programmer og forstå Java-kode skrevet av andre. Hvis du ikke har tatt noen Java-kurs tidligere er dette stedet å begynne. Vi bruker Eclipse IDE med siste versjon av Java (Standard Edition) til kurset.   Målsetting Etter gjennomført kurs vil deltakerne kunne skrive enkle programmer i Java og kjenne til de grunnleggende komponentene og prinsippene Java bygger på.   Kursinnhold Hva er Java? Kort historikk og anvendelseområder frem til idag. Grunnleggende konsepter for objektorientert programmering: Abstraksjon, innkapsling, arv og polymorfi Variabler og datatyper Klasser, objekter og metoder Public, Private og Protected Constructors, getters and setters Pakker og biblioteker Behandling av tall og tekst Betingelser (if - else, switch) Progammeringsløkker (for, while, do ... while, forEach) Lesing fra og skriving til tekstfiler Java Collections (Set, List, Map, ArrayList, TreeMap etc.) Lesing fra og skriving til databaser med JDBC Kompilering og eksekvering av Java-programmer Hente inn avhengigheter fra internett ved hjelp av Maven Nytt i Java: Stream api med filter, map, reduce, forEach og pil-funksjoner, samt Collections Literals.   Gjennomføring Kurset gjennomføres med en kombinasjon av online læringsmidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvingsoppgaver til hvert av temaene som gjennomgås. onsdag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»torsdag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»fredag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»mandag: Gjennomgang og oppsummering Fra kl.10:00-14:00   [-]
Les mer
2 dager 24 000 kr
28 Aug
23 Oct
22 Dec
SDWFND: Cisco SD WAN Operation and Deployment [+]
SDWFND: Cisco SD WAN Operation and Deployment [-]
Les mer
Nettkurs 4 timer 549 kr
SketchUp er et gratis 3D-modelleringsverktøy hvor du kan tegne i et to- eller tredimensjonalt perspektiv. Verktøyet brukes av arkitekter, ingeniører, snekkere, kunstnere ... [+]
Oppdag den intuitive og robuste verdenen av 3D-modellering med "SketchUp: Komplett", et omfattende kurs ledet av Espen Faugstad hos Utdannet.no. SketchUp, populært blant arkitekter, ingeniører, snekkere og kreative fagfolk, er et gratis verktøy som lar deg designe i både to- og tredimensjonalt perspektiv. Dette kurset er designet for alle som ønsker å lære å bruke SketchUp effektivt, uavhengig av tidligere erfaring. Kurset vil guide deg gjennom SketchUps grunnleggende, inkludert oppsett, verktøy og paneler, og hvordan du skaper to- og tredimensjonale figurer. Du vil lære å kontrollere kameraet, anvende ulike visningsstiler og manipulere objekter med en rekke verktøy. Videre dekkes tegning av figurer, måling og merking av modeller, organisering av prosjekter, samt arbeid med komponenter, materialer og teksturer. Med dette kurset vil du utvikle ferdigheter for å lage detaljerte og nøyaktige 3D-modeller og bli i stand til å presentere dine design på en overbevisende måte. Ved kursets slutt vil du ha en solid forståelse av SketchUp, noe som gjør deg i stand til å bruke programmet for en rekke prosjekter, fra enkle skisser til komplekse arkitektoniske design.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Kamera Kapittel 3: Visning Kapittel 4: Manipulere Kapittel 5: Tegne Kapittel 6: Måle og merke Kapittel 7: Organisere Kapittel 8: Komponenter Kapittel 9: Material og tekstur Kapittel 10: Presentasjon Kapittel 11: Avslutning   Varighet: 3 timer og 4 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Deltakerne lærer å håndtere lister på en rask og effektiv måte og vi ser også på noen av fordelene ved å gjøre en liste om til en tabell og når en ikke bør gjøre det. Ved... [+]
Kursinnhold Flash Fill Diagrammer Sparkline grafikk Hurtiganalyse Sortering og filtrering Avansert filter Delsammendrag Tabeller Målgruppe Deg som Jobber med lister i Excel Ønsker å effektivisere databehandlingen i Excel Vil ha en kjapp gjennomgang av disse elementene. Har grunnleggende kunnskaper i Excel og ønsker å lære mer. Forkunnskaper Har laget regneark Har kunnskaper tilsvarende «Ta kontroll over regnearket» Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
5 dager 25 500 kr
MS-101: Microsoft 365 Mobility and Security [+]
MS-101: Microsoft 365 Mobility and Security [-]
Les mer
Nettkurs 5 timer 549 kr
I dette kurset lærer du å annonsere med Google Ads slik at du blir synlig i det øyeblikket kunden søker etter ditt produkt eller tjeneste. Vi lærer deg å opprette og konf... [+]
Bli en ekspert i online annonsering med Google Ads gjennom dette dyptgående kurset ledet av Espen Faugstad, gründer av Utdannet.no og en veteran med over 10 års erfaring i digital markedsføring. Dette kurset er skreddersydd for alle, fra de som aldri har brukt Google Ads før, til de som har erfaring men ønsker å heve sin kompetanse til ekspertnivå. Kurset starter med grunnleggende om hvordan du oppretter og konfigurerer en Google Ads-konto. Du vil lære å installere Google Ads-taggen og konverteringssporing, utføre målgruppe- og søkeordsanalyse, og forstå hvordan Google Ads-auksjonen fungerer. Kurset dekker også hvordan du oppretter og optimaliserer ulike typer annonser, inkludert tekst-, bilde-, video- og remarketingannonser. Med en praktisk tilnærming vil kurset guide deg gjennom prosessen med å sette opp effektive kampanjer, forstå auksjonssystemet, og bruke analyseverktøy for å forbedre dine resultater. Ved kursets slutt vil du ha tilegnet deg den kunnskapen du trenger for å mestre Google Ads og drive effektiv annonsering på vegne av deg selv eller dine klienter.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Målgruppe Kapittel 3: Søkeord Kapittel 4: Auksjon Kapittel 5: Tekstannonser Kapittel 6: Bildeannonser Kapittel 7: Videoannonser Kapittel 8: Remarketing Kapittel 9: Analyse Kapittel 10: Avslutning   Varighet: 5 timer og 12 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
3 dager 7 900 kr
Etter fullført kurs skal du kunne frilegge, retusjere og sammenkopiere bilder. [+]
Vil du komme igang med Photoshop? På dette kurset lærer du å korrigere farger og kontraster i bilder for å oppnå en bedre kvalitet. Du lærer å retusjere bort uønskede elementer og fjerne rynker. Du lærer å sammenkopiere flere elementer ved hjelp av lag og masker og lagre bilder til ulike medier, med ulik oppløsning og ulike filformater. Når du har vært gjennom dette Photoshop-kurset kan du bearbeide din egen eller andres ide fra skisse til et ferdig bilde. Du kan lagre bildet til det mediet det skal brukes i med høy kvalitet. Dette lærer du: Fjerne bakgrunnen i bildene Fargekorrigering slik at du får spennende og fine bilder Retusjering Sette sammen flere bilder Bruk av masker Jobbe med tekst og form Lagre bilder til ulike medier, med ulik oppløsning og ulike filformater Optimalisering av bilder til web https://igm.no/photoshop-kurs/ [-]
Les mer
Oslo Bergen Og 1 annet sted 2 timer 15 900 kr
11 Sep
11 Sep
23 Oct
Leading SAFe® 6.0 [+]
Leading SAFe® [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. [+]
Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform. Learning Objectives This course teaches participants the following skills: Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform Use Cloud SQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform Employ BigQuery and Cloud Datalab to carry out interactive data analysis Train and use a neural network using TensorFlow Employ ML APIs Choose between different data processing products on the Google Cloud Platform Course Outline Module 1: Introducing Google Cloud Platform -Google Platform Fundamentals Overview-Google Cloud Platform Big Data Products Module 2: Compute and Storage Fundamentals -CPUs on demand (Compute Engine)-A global filesystem (Cloud Storage)-CloudShell-Lab: Set up an Ingest-Transform-Publish data processing pipeline Module 3: Data Analytics on the Cloud -Stepping-stones to the cloud-CloudSQL: your SQL database on the cloud-Lab: Importing data into CloudSQL and running queries-Spark on Dataproc-Lab: Machine Learning Recommendations with Spark on Dataproc Module 4: Scaling Data Analysis -Fast random access-Datalab-BigQuery-Lab: Build machine learning dataset Module 5: Machine Learning -Machine Learning with TensorFlow-Lab: Carry out ML with TensorFlow-Pre-built models for common needs-Lab: Employ ML APIs Module 6: Data Processing Architectures -Message-oriented architectures with Pub/Sub-Creating pipelines with Dataflow-Reference architecture for real-time and batch data processing Module 7: Summary -Why GCP?-Where to go from here-Additional Resources [-]
Les mer
Virtuelt klasserom 4 dager 24 000 kr
MS-500 MICROSOFT 365 SECURITY ADMINISTRATOR [+]
COURSE OVERVIEW This course is comprised of the following Microsoft Official Curriculum modules: MS-500T01 Managing Microsoft 365 Identity and Access, MS-500T02 Implementing Microsoft 365 Threat Protection, MS-500T03 Implementing Microsoft 365 Information Protection and MS-500T04 Administering Microsoft 365 Built-in Compliance.   MS-500T01 Managing Microsoft 365 Identity and Access Help protect against credential compromise with identity and access management. In this course you will learn how to secure user access to your organization’s resources. Specifically, this course covers user password protection, multi-factor authentication, how to enable Azure Identity Protection, how to configure Active Directory federation services, how to setup and use Azure AD Connect, and introduces you to Conditional Access. You will also learn about solutions for managing external access to your Microsoft 365 system.   MS500T02 Implementing Microsoft 365 Threat Protection Threat protection helps stop damaging attacks with integrated and automated security. In this course you will learn about threat protection technologies that help protect your Microsoft 365 environment. Specifically, you will learn about threat vectors and Microsoft’s security solutions for them. You will learn about Secure Score, Exchange Online protection, Azure Advanced Threat Protection, Windows Defender Advanced Threat Protection, and how to use Microsoft 365 Threat Intelligence. It also discusses securing mobile devices and applications. The goal of this course is to help you configure your Microsoft 365 deployment to achieve your desired security posture.   MS500T03 Implementing Microsoft 365 Information Protection Information protection is the concept of locating and classifying data anywhere it lives. In this course you will learn about information protection technologies that help secure your Microsoft 365 environment. Specifically, this course discusses information rights managed content, message encryption, as well as labels, policies and rules that support data loss prevention and information protection. Lastly, the course explains the deployment of Microsoft Cloud App Security.   MS500T04 Administering Microsoft 365 Built-in Compliance Internal policies and external requirements for data retention and investigation may be necessary for your organization. In this course you will learn about archiving and retention in Microsoft 365 as well as data governance and how to conduct content searches and investigations. Specifically, this course covers data retention policies and tags, in-place records management for SharePoint, email retention, and how to conduct content searches that support eDiscovery investigations. The course also helps your organization prepare for Global Data Protection Regulation (GDPR).   Virtual Learning   This interactive training can be taken from any location, your office or home and is delivered by a trainer. This training does not have any delegates in the class with the instructor, since all delegates are virtually connected. Virtual delegates do not travel to this course, Global Knowledge will send you all the information needed before the start of the course and you can test the logins. TARGET AUDIENCE This course is for the Microsoft 365 security administrator role. This role collaborates with the Microsoft 365 Enterprise Administrator, business stakeholders and other workload administrators to plan and implement security strategies and ensures that the solutions comply with the policies and regulations of the organization. COURSE CONTENT Module 1: User and Group Security This module explains how to manage user accounts and groups in Microsoft 365. It introduces you to Privileged Identity Management in Azure AD as well as Identity Protection. The module sets the foundation for the remainder of the course.   Module 2: Identity Synchronization This module explains concepts related to synchronizing identities. Specifically, it focuses on Azure AD Connect and managing directory synchronization to ensure the right people are connecting to your Microsoft 365 system.   Module 3: Federated Identities This module is all about Active Directory Federation Services (AD FS). Specifically, you will learn how to plan and manage AD FS to achieve the level of access you want to provide users from other directories.   Module 4: Access Management This module describes Conditional Access for Microsoft 365 and how it can be used to control access to resources in your organization. The module also explains Role Based Access Control (RBAC) and solutions for external access.   Module 5: Security in Microsoft 365 This module starts by explaining the various cyber-attack threats that exist. It then introduces you to the Microsoft solutions to thwart those threats. The module finishes with an explanation of Microsoft Secure Score and how it can be used to evaluate and report your organizations security posture.   Module 6: Advanced Threat Protection This module explains the various threat protection technologies and services available in Microsoft 365. Specifically, the module covers message protection through Exchange Online Protection, Azure Advanced Threat Protection and Windows Defender Advanced Threat Protection.   Module 7: Threat Intelligence This module explains Microsoft Threat Intelligence which provides you with the tools to evaluate and address cyber threats. You will learn how to use the Security Dashboard in the Microsoft 365 Security and Compliance Center. It also explains and configures Microsoft Advanced Threat Analytics.   Module 8: Mobility This module is all about securing mobile devices and applications. You will learn about Mobile Device Management and how it works with Intune. You will also learn about how Intune and Azure AD can be used to secure mobile applications.   Module 9: Information Protection This module explains information rights management in Exchange and SharePoint. It also describes encryption technologies used to secure messages. The module introduces how to implement Azure Information Protection and Windows Information Protection.   Module 10: Data Loss Prevention This module is all about data loss prevention in Microsoft 365. You will learn about how to create policies, edit rules, and customize user notifications.   Module 11: Cloud Application Security This module is all about cloud app security for Microsoft 365. The module will explain cloud discovery, app connectors, policies, and alerts.     [-]
Les mer