IT-kurs
Du har valgt: Klepp Stasjon
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Klepp Stasjon ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to provide accurate and reliable information about the configuration of services and configuration support items when and where it is needed. [+]
Understand the purpose and key concepts of Service Configuration Management, including its role in maintaining accurate and reliable information about configuration items (CIs) within the IT infrastructure. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content Mobile-optimised Practical exercises   Exam: 20 questions Multiple Choice 30 Minutes Closed book Pass Mark: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Majorstuen 3 dager 12 500 kr
08 Sep
13 Oct
24 Nov
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan du ut... [+]
Etter 3 dager med kurs vil du bli løftet opp på et helt nytt nivå. Du vil kunne kvalitetssikre ditt arbeid og bruke mindre tid på å løse dine arbeidsoppgaver. Du vil garantert merke stor forskjell når du er tilbake på jobb! Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Endre innstillingene i Excel for å få brukergrensesnittet du ønsker Kvalitetssikre regnearkene dine og unngå feil input gjennom validering Beskytt regneark mot å bli ødelagt ved feil bruk og feil lagring Betinget formatering gjør det enkelt å følge med sentrale verdier i regnearket. Bruk flere arbeidsbøker samtidig og utvid mulighetene dine Sortering og filtrering gjør arbeidet med lister og tabeller enkelt og effektivt. Bruk av funksjoner for å dra ut ønsket data fra en celle eller område Pivottabeller og pivotdiagram kan brukes for å trekke ut og vise data på en oversiktlig måte. Verktøy for analyse av data gjør deg i stand til å løse avanserte hva skjer hvis-spørsmål. Legg inn knapper/kontroller for å gjøre det enda lettere å bruke regnearkene dine Deling av arbeidsbøker gjør det lett å samarbeide med andre kollegaer. Innspilling av makroer sikrer konsekvent og korrekt databehandling Lag makroer ved å skrive programkoden selv (VBA) I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag. Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Excel erfaring som de gjerne deler med deg! «Fikk veldig mye ny kunnskap på relativt kort tid. Har blitt mye mer bevisst på hva Excel kan brukes til og det er mye mer enn jeg først trodde. Veldig god kursleder» Maria Amundsen, Jernbaneverkets Fellestjenester Kursinnhold Slik kan du kvalitetssikre regnearkmodellene dine - Effektiv og nyttig validering sikrer mot feil input- Beskytt regneark og bok mot å bli ødelagt ved feil bruk Lær deg å bygge gode og effektive formler med - Riktig bruk av cellereferanser- Navning av celler- Nyttige tekstformler- Smarte, innebyggede funksjoner- Å lage egne funksjoner for mer kompliserte formler som du ofte anvender Lær deg de smarte triksene du trenger til å arbeide med flere ark - Enkel kopiering av ark- Formler som summerer data fra flere ark- Hvordan du kan spare tid ved å arbeide på flere ark samtidig Slik bruker du flere Excel-bøker samtidig og utvider mulighetene dine - Riktig bruk av cellereferanser til annen bok, lær om fallgrubene og hvordan du unngår dem- Lær hvordan du setter opp og bruker hyperkoblinger til å hoppe mellom deler av prosjektet ditt- Lær om hvordan du lager dynamiske koblinger mellom Excel og andre programmer Smart bruk av Excel-maler gjør deg mer effektiv - Lær å lage, bruke og endre maler Når du vil koble Excel til bedriftens database-system - Forstå grunnprinsippene for en database- Lær hvordan du automatisk trekker data ut fra databasen og får dem skrevet inn i regnearket Slik analyserer du store datamengder på en effektiv og enkel måte - Lær deg riktig og god bruk av verktøyet Pivot- Lag sammendrag av dataene dine akkurat slik du ønsker- Lag pivot-tabeller basert direkte på bedriftens database Lær deg de nyttige og gode verktøyene for behandling av lister i Excel - Bruk av det nye, flotte verktøyet ’Tabell’- Forskjellige måter å sortere lister på- Hvordan du bruker filter for å plukke ut poster fra en liste- Hvordan du kan sette inn mellomsummer i listene dine Slik kan du forbedre brukervennligheten av regnearkene dine - Sett opp smarte kontroller som gjør det lettere for ukyndige brukere å anvende regneark-applikasjonene din- Lær deg å bruke validering til innskriving av lange tekster i celler Ta det store skrittet: lær deg effektiv og riktig makroprogrammering - Bruk av makroer kan gjøre dine Excel-applikasjoner raskere, enklere å bruke og sikrere- Makroinnspilleren hjelper deg til å lage flotte, nyttige og effektive makroer uten at du trenger å kunne programmering- Gå videre: lær deg også å forstå hemmeligheten ved programmering slik at du kan skrive programkoden selv. [-]
Les mer
Oslo 4 dager 23 900 kr
30 Sep
30 Sep
16 Dec
Vue.js, Vuex & Router Course [+]
Vue.js, Vuex & Router Course [-]
Les mer
Virtuelt klasserom 4 dager 22 000 kr
Learn how to investigate, respond to, and hunt for threats using Microsoft Azure Sentinel, Azure Defender, and Microsoft 365 Defender. [+]
COURSE OVERVIEW Learn how to investigate, respond to, and hunt for threats using Microsoft Azure Sentinel, Azure Defender, and Microsoft 365 Defender. In this course you will learn how to mitigate cyberthreats using these technologies. Specifically, you will configure and use Azure Sentinel as well as utilize Kusto Query Language (KQL) to perform detection, analysis, and reporting. The course was designed for people who work in a Security Operations job role and helps learners prepare for the exam SC-200: Microsoft Security Operations Analyst. TARGET AUDIENCE The Microsoft Security Operations Analyst collaborates with organizational stakeholders to secure information technology systems for the organization. Their goal is to reduce organizational risk by rapidly remediating active attacks in the environment, advising on improvements to threat protection practices, and referring violations of organizational policies to appropriate stakeholders. Responsibilities include threat management, monitoring, and response by using a variety of security solutions across their environment. The role primarily investigates, responds to, and hunts for threats using Microsoft Azure Sentinel, Azure Defender, Microsoft 365 Defender, and third-party security products. Since the Security Operations Analyst consumes the operational output of these tools, they are also a critical stakeholder in the configuration and deployment of these technologies. COURSE OBJECTIVES Explain how Microsoft Defender for Endpoint can remediate risks in your environment Create a Microsoft Defender for Endpoint environment Configure Attack Surface Reduction rules on Windows 10 devices Perform actions on a device using Microsoft Defender for Endpoint Investigate domains and IP addresses in Microsoft Defender for Endpoint Investigate user accounts in Microsoft Defender for Endpoint Configure alert settings in Microsoft Defender for Endpoint Explain how the threat landscape is evolving Conduct advanced hunting in Microsoft 365 Defender Manage incidents in Microsoft 365 Defender Explain how Microsoft Defender for Identity can remediate risks in your environment. Investigate DLP alerts in Microsoft Cloud App Security Explain the types of actions you can take on an insider risk management case. Configure auto-provisioning in Azure Defender Remediate alerts in Azure Defender Construct KQL statements Filter searches based on event time, severity, domain, and other relevant data using KQL Extract data from unstructured string fields using KQL Manage an Azure Sentinel workspace Use KQL to access the watchlist in Azure Sentinel Manage threat indicators in Azure Sentinel Explain the Common Event Format and Syslog connector differences in Azure Sentinel Connect Azure Windows Virtual Machines to Azure Sentinel Configure Log Analytics agent to collect Sysmon events Create new analytics rules and queries using the analytics rule wizard Create a playbook to automate an incident response Use queries to hunt for threats Observe threats over time with livestream COURSE CONTENT Module 1: Mitigate threats using Microsoft Defender for Endpoint Implement the Microsoft Defender for Endpoint platform to detect, investigate, and respond to advanced threats. Learn how Microsoft Defender for Endpoint can help your organization stay secure. Learn how to deploy the Microsoft Defender for Endpoint environment, including onboarding devices and configuring security. Learn how to investigate incidents and alerts using Microsoft Defender for Endpoints. Perform advanced hunting and consult with threat experts. You will also learn how to configure automation in Microsoft Defender for Endpoint by managing environmental settings.. Lastly, you will learn about your environment's weaknesses by using Threat and Vulnerability Management in Microsoft Defender for Endpoint. Lessons M1 Protect against threats with Microsoft Defender for Endpoint Deploy the Microsoft Defender for Endpoint environment Implement Windows 10 security enhancements with Microsoft Defender for Endpoint Manage alerts and incidents in Microsoft Defender for Endpoint Perform device investigations in Microsoft Defender for Endpoint Perform actions on a device using Microsoft Defender for Endpoint Perform evidence and entities investigations using Microsoft Defender for Endpoint Configure and manage automation using Microsoft Defender for Endpoint Configure for alerts and detections in Microsoft Defender for Endpoint Utilize Threat and Vulnerability Management in Microsoft Defender for Endpoint Lab M1: Mitigate threats using Microsoft Defender for Endpoint Deploy Microsoft Defender for Endpoint Mitigate Attacks using Defender for Endpoint After completing module 1, students will be able to: Define the capabilities of Microsoft Defender for Endpoint Configure Microsoft Defender for Endpoint environment settings Configure Attack Surface Reduction rules on Windows 10 devices Investigate alerts in Microsoft Defender for Endpoint Describe device forensics information collected by Microsoft Defender for Endpoint Conduct forensics data collection using Microsoft Defender for Endpoint Investigate user accounts in Microsoft Defender for Endpoint Manage automation settings in Microsoft Defender for Endpoint Manage indicators in Microsoft Defender for Endpoint Describe Threat and Vulnerability Management in Microsoft Defender for Endpoint Module 2: Mitigate threats using Microsoft 365 Defender Analyze threat data across domains and rapidly remediate threats with built-in orchestration and automation in Microsoft 365 Defender. Learn about cybersecurity threats and how the new threat protection tools from Microsoft protect your organization’s users, devices, and data. Use the advanced detection and remediation of identity-based threats to protect your Azure Active Directory identities and applications from compromise. Lessons M2 Introduction to threat protection with Microsoft 365 Mitigate incidents using Microsoft 365 Defender Protect your identities with Azure AD Identity Protection Remediate risks with Microsoft Defender for Office 365 Safeguard your environment with Microsoft Defender for Identity Secure your cloud apps and services with Microsoft Cloud App Security Respond to data loss prevention alerts using Microsoft 365 Manage insider risk in Microsoft 365 Lab M2: Mitigate threats using Microsoft 365 Defender Mitigate Attacks with Microsoft 365 Defender After completing module 2, students will be able to: Explain how the threat landscape is evolving. Manage incidents in Microsoft 365 Defender Conduct advanced hunting in Microsoft 365 Defender Describe the investigation and remediation features of Azure Active Directory Identity Protection. Define the capabilities of Microsoft Defender for Endpoint. Explain how Microsoft Defender for Endpoint can remediate risks in your environment. Define the Cloud App Security framework Explain how Cloud Discovery helps you see what's going on in your organization Module 3: Mitigate threats using Azure Defender Use Azure Defender integrated with Azure Security Center, for Azure, hybrid cloud, and on-premises workload protection and security. Learn the purpose of Azure Defender, Azure Defender's relationship to Azure Security Center, and how to enable Azure Defender. You will also learn about the protections and detections provided by Azure Defender for each cloud workload. Learn how you can add Azure Defender capabilities to your hybrid environment. Lessons M3 Plan for cloud workload protections using Azure Defender Explain cloud workload protections in Azure Defender Connect Azure assets to Azure Defender Connect non-Azure resources to Azure Defender Remediate security alerts using Azure Defender Lab M3: Mitigate threats using Azure Defender Deploy Azure Defender Mitigate Attacks with Azure Defender After completing module 3, students will be able to: Describe Azure Defender features Explain Azure Security Center features Explain which workloads are protected by Azure Defender Explain how Azure Defender protections function Configure auto-provisioning in Azure Defender Describe manual provisioning in Azure Defender Connect non-Azure machines to Azure Defender Describe alerts in Azure Defender Remediate alerts in Azure Defender Automate responses in Azure Defender Module 4: Create queries for Azure Sentinel using Kusto Query Language (KQL) Write Kusto Query Language (KQL) statements to query log data to perform detections, analysis, and reporting in Azure Sentinel. This module will focus on the most used operators. The example KQL statements will showcase security related table queries. KQL is the query language used to perform analysis on data to create analytics, workbooks, and perform hunting in Azure Sentinel. Learn how basic KQL statement structure provides the foundation to build more complex statements. Learn how to summarize and visualize data with a KQL statement provides the foundation to build detections in Azure Sentinel. Learn how to use the Kusto Query Language (KQL) to manipulate string data ingested from log sources. Lessons M4 Construct KQL statements for Azure Sentinel Analyze query results using KQL Build multi-table statements using KQL Work with data in Azure Sentinel using Kusto Query Language Lab M4: Create queries for Azure Sentinel using Kusto Query Language (KQL) Construct Basic KQL Statements Analyze query results using KQL Build multi-table statements using KQL Work with string data using KQL statements After completing module 4, students will be able to: Construct KQL statements Search log files for security events using KQL Filter searches based on event time, severity, domain, and other relevant data using KQL Summarize data using KQL statements Render visualizations using KQL statements Extract data from unstructured string fields using KQL Extract data from structured string data using KQL Create Functions using KQL Module 5: Configure your Azure Sentinel environment Get started with Azure Sentinel by properly configuring the Azure Sentinel workspace. Traditional security information and event management (SIEM) systems typically take a long time to set up and configure. They're also not necessarily designed with cloud workloads in mind. Azure Sentinel enables you to start getting valuable security insights from your cloud and on-premises data quickly. This module helps you get started. Learn about the architecture of Azure Sentinel workspaces to ensure you configure your system to meet your organization's security operations requirements. As a Security Operations Analyst, you must understand the tables, fields, and data ingested in your workspace. Learn how to query the most used data tables in Azure Sentinel. Lessons M5 Introduction to Azure Sentinel Create and manage Azure Sentinel workspaces Query logs in Azure Sentinel Use watchlists in Azure Sentinel Utilize threat intelligence in Azure Sentinel Lab M5 : Configure your Azure Sentinel environment Create an Azure Sentinel Workspace Create a Watchlist Create a Threat Indicator After completing module 5, students will be able to: Identify the various components and functionality of Azure Sentinel. Identify use cases where Azure Sentinel would be a good solution. Describe Azure Sentinel workspace architecture Install Azure Sentinel workspace Manage an Azure Sentinel workspace Create a watchlist in Azure Sentinel Use KQL to access the watchlist in Azure Sentinel Manage threat indicators in Azure Sentinel Use KQL to access threat indicators in Azure Sentinel Module 6: Connect logs to Azure Sentinel Connect data at cloud scale across all users, devices, applications, and infrastructure, both on-premises and in multiple clouds to Azure Sentinel. The primary approach to connect log data is using the Azure Sentinel provided data connectors. This module provides an overview of the available data connectors. You will get to learn about the configuration options and data provided by Azure Sentinel connectors for Microsoft 365 Defender. Lessons M6 Connect data to Azure Sentinel using data connectors Connect Microsoft services to Azure Sentinel Connect Microsoft 365 Defender to Azure Sentinel Connect Windows hosts to Azure Sentinel Connect Common Event Format logs to Azure Sentinel Connect syslog data sources to Azure Sentinel Connect threat indicators to Azure Sentinel Lab M6: Connect logs to Azure Sentinel Connect Microsoft services to Azure Sentinel Connect Windows hosts to Azure Sentinel Connect Linux hosts to Azure Sentinel Connect Threat intelligence to Azure Sentinel After completing module 6, students will be able to: Explain the use of data connectors in Azure Sentinel Explain the Common Event Format and Syslog connector differences in Azure Sentinel Connect Microsoft service connectors Explain how connectors auto-create incidents in Azure Sentinel Activate the Microsoft 365 Defender connector in Azure Sentinel Connect Azure Windows Virtual Machines to Azure Sentinel Connect non-Azure Windows hosts to Azure Sentinel Configure Log Analytics agent to collect Sysmon events Explain the Common Event Format connector deployment options in Azure Sentinel Configure the TAXII connector in Azure Sentinel View threat indicators in Azure Sentinel Module 7: Create detections and perform investigations using Azure Sentinel Detect previously uncovered threats and rapidly remediate threats with built-in orchestration and automation in Azure Sentinel. You will learn how to create Azure Sentinel playbooks to respond to security threats. You'll investigate Azure Sentinel incident management, learn about Azure Sentinel events and entities, and discover ways to resolve incidents. You will also learn how to query, visualize, and monitor data in Azure Sentinel. Lessons M7 Threat detection with Azure Sentinel analytics Threat response with Azure Sentinel playbooks Security incident management in Azure Sentinel Use entity behavior analytics in Azure Sentinel Query, visualize, and monitor data in Azure Sentinel Lab M7: Create detections and perform investigations using Azure Sentinel Create Analytical Rules Model Attacks to Define Rule Logic Mitigate Attacks using Azure Sentinel Create Workbooks in Azure Sentinel After completing module 7, students will be able to: Explain the importance of Azure Sentinel Analytics. Create rules from templates. Manage rules with modifications. Explain Azure Sentinel SOAR capabilities. Create a playbook to automate an incident response. Investigate and manage incident resolution. Explain User and Entity Behavior Analytics in Azure Sentinel Explore entities in Azure Sentinel Visualize security data using Azure Sentinel Workbooks. Module 8: Perform threat hunting in Azure Sentinel In this module, you'll learn to proactively identify threat behaviors by using Azure Sentinel queries. You'll also learn to use bookmarks and livestream to hunt threats. You will also learn how to use notebooks in Azure Sentinel for advanced hunting. Lessons M8 Threat hunting with Azure Sentinel Hunt for threats using notebooks in Azure Sentinel Lab M8 : Threat hunting in Azure Sentinel Threat Hunting in Azure Sentinel Threat Hunting using Notebooks After completing this module, students will be able to: Describe threat hunting concepts for use with Azure Sentinel Define a threat hunting hypothesis for use in Azure Sentinel Use queries to hunt for threats. Observe threats over time with livestream. Explore API libraries for advanced threat hunting in Azure Sentinel Create and use notebooks in Azure Sentinel [-]
Les mer
Oslo 1 dag 9 900 kr
22 Sep
22 Sep
01 Dec
ITIL® 4 Practitioner: Change enablement [+]
ITIL® 4 Practitioner: Change Enablement [-]
Les mer
Virtuelt klasserom 5 dager 28 000 kr
The Implementing and Administering Cisco Solutions course provides a broad range of fundamental knowledge for all IT careers. [+]
COURSE OVERVIEW  Through a combination of lecture and hands-on labs, you will learn how to install, operate, configure, and verify a basic IPv4 and IPv6 network. The course covers configuring network components such as switches, routers, and Wireless LAN Controllers; managing network devices; and identifying basic security threats. Network programmability, automation, and software-defined networking are also covered at a foundational level.   This course helps you prepare to take the 200-301 Cisco Certified Network Associate (CCNA) exam.   Please note that this course is a combination of Instructor-Led and Self-Paced Study - 5 days in the classroom and approx 3 days of self study. The self-study content will be provided as part of the digital courseware that you recieve at the beginning of the course and should be part of your preparation for the exam. Lab access is provided for both the class and the self- study sections, lab access is valid for 60 hours or 90 days whichever is the shorter, so please ensure you exit the lab exercises when not in use. TARGET AUDIENCE Anyone looking to start a career in networking or wishing to achieve the Cisco CCNA Certification. COURSE OBJECTIVES After completing this course you should be able to: Identify the components of a computer network and describe their basic characteristics Understand the model of host-to-host communication Describe the features and functions of the Cisco IOS Software Describe LANs and the role of switches within LANs Describe Ethernet as the network access layer of TCP/IP and describe the operation of switches Install a switch and perform the initial configuration Describe the TCP/IP internet Layer, IPv4, its addressing scheme, and subnetting Describe the TCP/IP Transport layer and Application layer Explore functions of routing Implement basic configuration on a Cisco router Explain host-to-host communications across switches and routers Identify and resolve common switched network issues and common problems associated with IPv4 addressing Describe IPv6 main features, addresses and configure and verify basic IPv6 connectivity Describe the operation, benefits, and limitations of static routing Describe, implement and verify VLANs and trunks Describe the application and configuration of inter-VLAN routing Explain the basics of dynamic routing protocols and describe components and terms of OSPF Explain how STP and RSTP work Configure link aggregation using EtherChannel Describe the purpose of Layer 3 redundancy protocols Describe basic WAN and VPN concepts Describe the operation of ACLs and their applications in the network Configure internet access using DHCP clients and explain and configure NAT on Cisco routers Describe the basic QoS concepts Describe the concepts of wireless networks, which types of wireless networks can be built and how to use WLC Describe network and device architectures and introduce virtualization Introduce the concept of network programmability and SDN and describe the smart network management solutions like Cisco DNA Center, SD-Access and SD-WAN Configure basic IOS system monitoring tools Describe the management of Cisco devices Describe the current security threat landscape Describe threat defense technologies Implement a basic security configuration of the device management plane Implement basic steps to harden network devices COURSE CONTENT Exploring the Functions of Networking Introducing the Host-To-Host Communications Model Operating Cisco IOS Software Introducing LANs Exploring the TCP/IP Link Layer Starting a Switch Introducing the TCP/IP Internet Layer, IPv4 Addressing, and Subnets Explaining the TCP/IP Transport Layer and Application Layer Exploring the Functions of Routing Configuring a Cisco Router Exploring the Packet Delivery Process Troubleshooting a Simple Network Introducing Basic IPv6 Configuring Static Routing Implementing VLANs and Trunks Routing Between VLANs Introducing OSPF Building Redundant Switched Topologies (Self-Study) Improving Redundant Switched Topologies with EtherChannel Exploring Layer 3 Redundancy (Self-Study) Introducing WAN Technologies (Self-Study) Explaining Basics of ACL Enabling Internet Connectivity Introducing QoS (Self-Study) Explaining Wireless Fundamentals (Self-Study) Introducing Architectures and Virtualization (Self-Study) Explaining the Evolution of Intelligent Networks Introducing System Monitoring Managing Cisco Devices Examining the Security Threat Landscape (Self-Study) Implementing Threat Defense Technologies (Self-Study) Securing Administrative Access Implementing Device Hardening Labs: Get Started with Cisco CLI Observe How a Switch Operates Perform Basic Switch Configuration Inspect TCP/IP Applications Configure an Interface on a Cisco Router Configure and Verify Layer 2 Discovery Protocols Configure Default Gateway Explore Packet Forwarding Troubleshoot Switch Media and Port Issues Troubleshoot Port Duplex Issues Configure Basic IPv6 Connectivity Configure and Verify IPv4 Static Routes Configure IPv6 Static Routes Configure VLAN and Trunk Configure a Router on a Stick Configure and Verify Single-Area OSPF Configure and Verify EtherChannel Configure and Verify IPv4 ACLs Configure a Provider-Assigned IPv4 Address Configure Static NAT Configure Dynamic NAT and PAT Log into the WLC Monitor the WLC Configure a Dynamic (VLAN) Interface Configure a DHCP Scope Configure a WLAN Define a RADIUS Server Explore Management Options Explore the Cisco DNA Center Configure and Verify NTP Create the Cisco IOS Image Backup Upgrade Cisco IOS Image Configure WLAN Using WPA2 PSK Using the GUI Secure Console and Remote Access Enable and Limit Remote Access Connectivity Secure Device Administrative Access Configure and Verify Port Security Implement Device Hardening TEST CERTIFICATION Recommended as preparation for the following exams:  200-301 -  Cisco Certified Network Associate Exam (CCNA) [-]
Les mer
Bedriftsintern 4 dager 32 000 kr
This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a com... [+]
Objectives This course teaches participants the following skills: Design and build data processing systems on Google Cloud Platform Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow Derive business insights from extremely large datasets using Google BigQuery Train, evaluate, and predict using machine learning models using Tensorflow and Cloud ML Leverage unstructured data using Spark and ML APIs on Cloud Dataproc Enable instant insights from streaming data   All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Data Engineering -Explore the role of a data engineer-Analyze data engineering challenges-Intro to BigQuery-Data Lakes and Data Warehouses-Demo: Federated Queries with BigQuery-Transactional Databases vs Data Warehouses-Website Demo: Finding PII in your dataset with DLP API-Partner effectively with other data teams-Manage data access and governance-Build production-ready pipelines-Review GCP customer case study-Lab: Analyzing Data with BigQuery Module 2: Building a Data Lake -Introduction to Data Lakes-Data Storage and ETL options on GCP-Building a Data Lake using Cloud Storage-Optional Demo: Optimizing cost with Google Cloud Storage classes and Cloud Functions-Securing Cloud Storage-Storing All Sorts of Data Types-Video Demo: Running federated queries on Parquet and ORC files in BigQuery-Cloud SQL as a relational Data Lake-Lab: Loading Taxi Data into Cloud SQL Module 3: Building a Data Warehouse -The modern data warehouse-Intro to BigQuery-Demo: Query TB+ of data in seconds-Getting Started-Loading Data-Video Demo: Querying Cloud SQL from BigQuery-Lab: Loading Data into BigQuery-Exploring Schemas-Demo: Exploring BigQuery Public Datasets with SQL using INFORMATION_SCHEMA-Schema Design-Nested and Repeated Fields-Demo: Nested and repeated fields in BigQuery-Lab: Working with JSON and Array data in BigQuery-Optimizing with Partitioning and Clustering-Demo: Partitioned and Clustered Tables in BigQuery-Preview: Transforming Batch and Streaming Data Module 4: Introduction to Building Batch Data Pipelines -EL, ELT, ETL-Quality considerations-How to carry out operations in BigQuery-Demo: ELT to improve data quality in BigQuery-Shortcomings-ETL to solve data quality issues Module 5: Executing Spark on Cloud Dataproc -The Hadoop ecosystem-Running Hadoop on Cloud Dataproc-GCS instead of HDFS-Optimizing Dataproc-Lab: Running Apache Spark jobs on Cloud Dataproc Module 6: Serverless Data Processing with Cloud Dataflow -Cloud Dataflow-Why customers value Dataflow-Dataflow Pipelines-Lab: A Simple Dataflow Pipeline (Python/Java)-Lab: MapReduce in Dataflow (Python/Java)-Lab: Side Inputs (Python/Java)-Dataflow Templates-Dataflow SQL Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer -Building Batch Data Pipelines visually with Cloud Data Fusion-Components-UI Overview-Building a Pipeline-Exploring Data using Wrangler-Lab: Building and executing a pipeline graph in Cloud Data Fusion-Orchestrating work between GCP services with Cloud Composer-Apache Airflow Environment-DAGs and Operators-Workflow Scheduling-Optional Long Demo: Event-triggered Loading of data with Cloud Composer, Cloud Functions, -Cloud Storage, and BigQuery-Monitoring and Logging-Lab: An Introduction to Cloud Composer Module 8: Introduction to Processing Streaming Data Processing Streaming Data Module 9: Serverless Messaging with Cloud Pub/Sub -Cloud Pub/Sub-Lab: Publish Streaming Data into Pub/Sub Module 10: Cloud Dataflow Streaming Features -Cloud Dataflow Streaming Features-Lab: Streaming Data Pipelines Module 11: High-Throughput BigQuery and Bigtable Streaming Features -BigQuery Streaming Features-Lab: Streaming Analytics and Dashboards-Cloud Bigtable-Lab: Streaming Data Pipelines into Bigtable Module 12: Advanced BigQuery Functionality and Performance -Analytic Window Functions-Using With Clauses-GIS Functions-Demo: Mapping Fastest Growing Zip Codes with BigQuery GeoViz-Performance Considerations-Lab: Optimizing your BigQuery Queries for Performance-Optional Lab: Creating Date-Partitioned Tables in BigQuery Module 13: Introduction to Analytics and AI -What is AI?-From Ad-hoc Data Analysis to Data Driven Decisions-Options for ML models on GCP Module 14: Prebuilt ML model APIs for Unstructured Data -Unstructured Data is Hard-ML APIs for Enriching Data-Lab: Using the Natural Language API to Classify Unstructured Text Module 15: Big Data Analytics with Cloud AI Platform Notebooks -What’s a Notebook-BigQuery Magic and Ties to Pandas-Lab: BigQuery in Jupyter Labs on AI Platform Module 16: Production ML Pipelines with Kubeflow -Ways to do ML on GCP-Kubeflow-AI Hub-Lab: Running AI models on Kubeflow Module 17: Custom Model building with SQL in BigQuery ML -BigQuery ML for Quick Model Building-Demo: Train a model with BigQuery ML to predict NYC taxi fares-Supported Models-Lab Option 1: Predict Bike Trip Duration with a Regression Model in BQML-Lab Option 2: Movie Recommendations in BigQuery ML Module 18: Custom Model building with Cloud AutoML -Why Auto ML?-Auto ML Vision-Auto ML NLP-Auto ML Tables [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
3 dager 17 500 kr
3-dagers instruktør-ledet kurs som fører frem til ITIL Foundation sertifisering. [+]
Sopra Steria Akademiet er en del av Sopra Steria, og tilbyr kurs og opplæring innen: IT Service Management Prosjekt- og programstyring It-styring og kontroll Våre instruktører jobber til daglig som rådgivere innen disse områdene i Sopra Steria.  ITIL® 4 er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. ITIL® 4 Foundation-sertifiseringen er designet som en introduksjon til ITIL® 4 og gjør det mulig for kandidater å se på IT-tjenestestyring gjennom en ende-til-ende driftsmodell for oppretting, levering og kontinuerlig forbedring av teknisk aktiverte produkter og tjenester. Kurset varer i 3 dager. Vi stiller med erfarne norske instruktører. Kursmateriell og eksamen er på engelsk. Eksamen gjennomføres etter at kurset er fullført. Du vil motta en sertifiseringsvoucher på e-post, slik at du kan bestille sertifiseringstesten til ønsket tid. Eksamen er online basert og må gjennomføres på PC med internt/eksternt web kamera. Eksamen varer i 75 minutter.  Det bør beregnes 6 timer til selvstudium. Du kan lese mere om ITIL her ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer