IT-kurs
Viken
Du har valgt: Kråkstad
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Kråkstad ) i IT-kurs
 

Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Innføring i datamodellering med EER og UML-notasjon. Design av relasjonsdatabase inkl. bruk av nøkler, referanseintegritet og enkel normalisering. Databasedefinisjon (DDL... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: IT Introduksjon eller tilsvarende. Innleveringer: Øvinger: 8 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 3 timer Ansvarlig: Tore Mallaug Eksamensdato: 09.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten skal:- kjenne sentrale begreper innen databaser og datamodellering, og kan gjøre rede for disse- forstå hvordan en relasjonsdatabase er bygd opp ved å se på relasjonene (tabellene) og tilhørende nøkler- forstå (tolke) et (E)ER-diagram modellert i fagets gjeldende notasjon, og vite hvordan dette kan oversettes til relasjonsmodellen- gjøre rede for hvordan databaser kan fungere i en klient/tjener-arkitektur. FERDIGHETER:Kandidaten skal kunne:- tegne sitt eget (E)ER-diagram for å oppnå en god databasestruktur- lage sin egen normaliserte relasjonsdatabase med nøkler og referanseintegritet, og opprette databasen i et valgt databaseverktøy (databasesystem)- utføre SQL-spørringer mot en gitt database- lage en relasjonsdatabase som støtter opp om funksjonaliteten til et gitt grafisk brukergrensesnitt GENERELL KOMPETANSEKandidaten- viser en bevisst holdning til strukturell lagring og representasjon av data i et informasjonssystem- viser en bevisst holdning til databasedesign for å unngå unødvendig dobbeltlagring av data i en database Innhold:Innføring i datamodellering med EER og UML-notasjon. Design av relasjonsdatabase inkl. bruk av nøkler, referanseintegritet og enkel normalisering. Databasedefinisjon (DDL) og datamanipulering (DML) i SQL. Bruk av et valgt databaseverktøy (MySQL), se sammenhengen mellom datamodell, databaseverktøy og applikasjon / web-grensesnitt (klient/tjener -arkitektur).Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Databaser 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
Virtuelt eller personlig 2 timer 2 450 kr
Hypotesetesting avgjør om datasett har signifikant forskjellig snitt eller variasjon for å bestemme rotårsaker, årsakssammenhenger eller effekt av endringer. [+]
Kurs i hypotesetesting I forbedringsarbeid og problemløsning tester vi hypoteser for å bestemme rotårsaker og årsakssammenhenger. Dette kurset lærer deg å utforme og teste hypoteser. Du får svar på spørsmål som: Er det signifikante forskjeller i gjennomsnitt eller variasjon? Har endringen vi har gjort medført en signifikant forbedring?   Kurset er for deg som vil: utforme hypotese basert på egne teorier om rotårsak eller årsakssammenhenger bestemme om datasett har signifikante forskjelliger i gjennomsnitt eller variasjon avgjøre om forbedringsarbeid har gitt signifikante forskjeller forstå årsakssammenhenger ved hjelp av statistikk   Du lærer følgende: Bruk av statistisk hypotesetesting Praktisk og statistisk signifikans Statistikk og sannsynlighet Utforme hypotese Velge Hypotesetest (type data, fordeling, statistikk av interesse, # populasjoner) Trekke konklusjon basert på p-verdi Type I og type II feil Vurdering av datautvalg og prøveantall Bruke av p-verdi Vi bruker praktiske eksempler og øvelser i undervisningen.     Kursholder Kursholder Sissel Pedersen Lundeby er IASSC (International association for Six Sigma certification) akkreditert kursholder (eneste i Norge per januar 2022): "This accreditation publically reflects that you have met the standards established by IASSC such that those who participate in a training program led by you can expect to receive an acceptable level of knowledge transfer consistent with the Lean Six Sigma belt Bodies of Knowledge as established by IASSC."  Hypotesetesting er et av verktøyene som benyttes innen Lean Six Sigma, og Sissel har bred erfaring med anvendelse av dette verktøyet.  Sissel er utdannet sivilingeniør i kjemiteknikk fra NTNU, og har mer enn 20 års erfaring innen produksjon og miljøteknologi. Hennes Lean Six Sigma opplæring startet i 2002, hos et amerikansk firma, hvor hun ble Black Belt sertifisert. I 2017 ble hun også Black Belt sertifisert gjennom IASSC. Sissel har svært god erfaring med å bruke Lean Six Sigma til forbedringer, og fokuserer på å skape målbare resultater. Kursene bruker praktiske, gjenkjennelige eksempler, og formidler Lean Six Sigma på en enkel, forståelig måte.      Tilbakemeldinger "Inspirerende, faglig dyktig, folkeliggjør et teoretisk fagområde" Espen Fjeld, Kommersiell direktør hos Berendsen "Faglig meget dyktig og klar fremføring. Morsom og skaper tillit" Jon Sørensen, Produksjonsleder hos Berendsen "10/10 flink til å nå alle" Erlend Stene, Salgsleder hos Berendsen "Tydelig og bra presentert. God til å kontrollspørre og lytte (sjekke forståelse)" Morten Bodding, Produksjonsleder hos Berendsen "Utgjorde en forskjell, engasjert og dyktig" Kursdeltager fra EWOS "Du er inspirerende, positiv og dyktig i faget" Kursdeltager fra EWOS "Jeg var veldig imponert over Sissels Lean Six Sigma kunnskap. Hun gjør det enkelt å identifisere forbedringer og skape resultater" Daryl Powell, Lean Manager, Kongsberg Maritime Subsea   Praktisk informasjon Kurset arrangeres på forespørsel fra bedrifter. Åpne kurs arrangeres ihht kurskalenderen. Kurset består av et nettmøte på 2 timer. [-]
Les mer
Oslo 4 dager 23 900 kr
30 Sep
30 Sep
16 Dec
Vue.js, Vuex & Router Course [+]
Vue.js, Vuex & Router Course [-]
Les mer
13 timer
Grunnleggende Excel [+]
Her starter vi ganske på begynnelsen, og går ut fra at deltagerne har liten eller ingen erfaring med Excel. Vi starter med de grunnleggende prinsippene, og bygger så videre på dem. I stikkordsform ser innholdet ut slik: Regnearkets oppbygning – grunnprinsipper Tall og tekst – identifisere og korrigere/konvertere Listefunksjonalitet – sortere, filtrere, redigere, skrive ut, etc. Grunnleggende formelbygging – de fire regneartene Kopiering av formler – absolutte og relative referanser Sentrale funksjoner: SUMMER, GJENNOMSNITT, HVIS,   HVISFEIL Modellbyggingsteknikker - sammendrag av data over flere ark Grafiske fremstillinger av numeriske data Identifisere og fjerne duplikatverdier fra en liste Arbeide med tid (dager, klokkeslett, etc.) i Excel [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Virtuelt klasserom 4 dager 23 000 kr
This course prepares students with the background to design and evaluate cybersecurity strategies in the following areas: Zero Trust, Governance Risk Compliance (GRC), se... [+]
. Students will also learn how to design and architect solutions using zero trust principles and specify security requirements for cloud infrastructure in different service models (SaaS, PaaS, IaaS). TARGET AUDIENCE IT professionals with advanced experience and knowledge in a wide range of security engineering areas, including identity and access, platform protection, security operations, securing data, and securing applications. They should also have experience with hybrid and cloud implementations. COURSE OBJECTIVES Design a Zero Trust strategy and architecture Evaluate Governance Risk Compliance (GRC) technical strategies and security operations strategies Design security for infrastructure Design a strategy for data and applications COURSE CONTENT Module 1: Build an overall security strategy and architecture Learn how to build an overall security strategy and architecture. Lessons M1 Introduction Zero Trust overview Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design a security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Understand security for protocols Exercise: Build an overall security strategy and architecture Knowledge check Summary After completing module 1, students will be able to: Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Module 2: Design a security operations strategy Learn how to design a security operations strategy. Lessons M2 Introduction Understand security operations frameworks, processes, and procedures Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, Evaluate security workflows Review security strategies for incident management Evaluate security operations strategy for sharing technical threat intelligence Monitor sources for insights on threats and mitigations After completing module 2, students will be able to: Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments. Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, A Evaluate security workflows. Review security strategies for incident management. Evaluate security operations for technical threat intelligence. Monitor sources for insights on threats and mitigations. Module 3: Design an identity security strategy Learn how to design an identity security strategy. Lessons M3 Introduction Secure access to cloud resources Recommend an identity store for security Recommend secure authentication and security authorization strategies Secure conditional access Design a strategy for role assignment and delegation Define Identity governance for access reviews and entitlement management Design a security strategy for privileged role access to infrastructure Design a security strategy for privileged activities Understand security for protocols After completing module 3, students will be able to: Recommend an identity store for security. Recommend secure authentication and security authorization strategies. Secure conditional access. Design a strategy for role assignment and delegation. Define Identity governance for access reviews and entitlement management. Design a security strategy for privileged role access to infrastructure. Design a security strategy for privileged access. Module 4: Evaluate a regulatory compliance strategy Learn how to evaluate a regulatory compliance strategy. Lessons M4 Introduction Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency Requirements Translate privacy requirements into requirements for security solutions After completing module 4, students will be able to: Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency requirements Translate privacy requirements into requirements for security solutions Module 5: Evaluate security posture and recommend technical strategies to manage risk Learn how to evaluate security posture and recommend technical strategies to manage risk. Lessons M5 Introduction Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks After completing module 5, students will be able to: Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks Module 6: Understand architecture best practices and how they are changing with the Cloud Learn about architecture best practices and how they are changing with the Cloud. Lessons M6 Introduction Plan and implement a security strategy across teams Establish a strategy and process for proactive and continuous evolution of a security strategy Understand network protocols and best practices for network segmentation and traffic filtering After completing module 6, students will be able to: Describe best practices for network segmentation and traffic filtering. Plan and implement a security strategy across teams. Establish a strategy and process for proactive and continuous evaluation of security strategy. Module 7: Design a strategy for securing server and client endpoints Learn how to design a strategy for securing server and client endpoints. Lessons M7 Introduction Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type After completing module 7, students will be able to: Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type Module 8: Design a strategy for securing PaaS, IaaS, and SaaS services Learn how to design a strategy for securing PaaS, IaaS, and SaaS services. Lessons M8 Introduction Specify security baselines for PaaS services Specify security baselines for IaaS services Specify security baselines for SaaS services Specify security requirements for IoT workloads Specify security requirements for data workloads Specify security requirements for web workloads Specify security requirements for storage workloads Specify security requirements for containers Specify security requirements for container orchestration After completing module 8, students will be able to: Specify security baselines for PaaS, SaaS and IaaS services Specify security requirements for IoT, data, storage, and web workloads Specify security requirements for containers and container orchestration Module 9: Specify security requirements for applications Learn how to specify security requirements for applications. Lessons M9 Introduction Understand application threat modeling Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs After completing module 9, students will be able to: Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs Module 10: Design a strategy for securing data Learn how to design a strategy for securing data. Lessons M10 Introduction Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion After completing module 10, students will be able to: Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion [-]
Les mer
Arne Rettedals Hus 3 timer 3 200 kr
15 Oct
OneNote er et program fra Microsoft som gir deg mulighet til å digitalisere dine notater, og på kurset viser vi deg hvordan du jobber med opprettelse og oppbygning av not... [+]
OneNote er et program fra Microsoft som gir deg mulighet til å digitalisere dine notater. Programmet egner seg særlig for deg som har behov for å skrive møtenotater, foredragsnotater og arbeidsnotater. OneNote vil synkronisere dine notater på tvers av dine enheter, og kan benyttes på din PC, din smarttelefon eller nettbrett. Du kan bygge inn tekst og filer fra Outlook, Word, Excel og PowerPoint, samt film- og lydfiler. Har du oversikten over notater etter at møter er over? Føler du at de papirbaserte notatene over tid blir uoversiktlige og lite tilgjengelige. Du kan jobbe raskere, smartere og bedre ved å ta i bruk OneNote. I dine digitale notater i OneNote kan du inkludere tekst, bilder, lenker til filer og websider, lyd og film. Du kan ta notater fra din smarttelefon, ditt nettbrett eller din PC; alt etter hva du har tilgjengelig. Systemet vil synkronisere notatene på tvers av dine enheter. OneNote er en del av Microsoft Office og er tilgjengelig gratis for alle.  Kurset kan spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler. Deltakere må ha med egen datamaskin med relevant programvare. 6 gode grunner til å delta Du vil se hvor enkelt det er å ta raske notater Lær hvordan du finner igjen notater raskt og effektivt Du vil kunne koble notater til oppgaver i Outlook Lær å holde møtenotater koblet til avtaler og møter i Outlook Få en innføring i hvordan flere kan jobbe samtidig med notater Lær hvordan OneNote kobler lyd/videoopptak med notater Synkroniser dine notater mellom dine enheter (PC, mobil, nettbrett) Forkunnskap: Erfaring i bruk av Microsoft Office. Varighet:3 timer Pris:3200 kroner Ansatte ved UiS har egne betalingsbetingelser. [-]
Les mer
Nettkurs 3 timer 549 kr
I dette kurset kommer Espen Faugstad til å lære deg å opprette, tilpasse og bruke stiler i Adobe InDesign. Dette er teknikker som alle profesjonelle InDesign-brukere kjen... [+]
I dette kurset vil Espen Faugstad lære deg hvordan du oppretter, tilpasser og bruker stiler i Adobe InDesign. Dette er teknikker som er velkjente blant profesjonelle InDesign-brukere og kan gjøre deg til en mer effektiv bruker av programmet, samtidig som de sparer deg for verdifull tid. Kurset er delt inn i flere kapitler som dekker ulike aspekter av stilarbeid i InDesign: Kapittel 1: Introduksjon Kapittel 2: Grunnleggende Kapittel 3: Viderekommen Kapittel 4: Avansert Kapittel 5: List styles Kapittel 6: Object styles Kapittel 7: Table styles Kapittel 8: Avslutning I Kapittel 1 lærer du å tilpasse arbeidsområdet i InDesign for optimalt arbeid med stiler. Kapittel 2 gir deg en forståelse av forskjellen mellom "Character Styles" og "Paragraph Styles" samt hvordan du oppretter, tilpasser og bruker tekststiler. I Kapittel 3 lærer du å importere tekststiler fra InDesign-dokumenter og Word-dokumenter, samt hvordan du kopierer tekst og stiler og bruker "Quick Apply". Kapittel 4 tar deg med inn i avanserte tekststiler, inkludert "Nested Stiles," "New Line Style" og "GREP Style." I Kapittel 5 lærer du å arbeide med "List styles," inkludert oppretting av punktliste, nummerliste og flernivåsliste. Kapittel 6 fokuserer på "Object Styles," og Kapittel 7 dekker "Table Styles" og "Cell Styles." Dette kurset gir deg den nødvendige kunnskapen og ferdighetene til å jobbe effektivt med stiler i Adobe InDesign, noe som er avgjørende for å produsere profesjonelt layoutet innhold.   Varighet: 2 timer og 58 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo 5 dager 30 000 kr
22 Sep
22 Sep
17 Nov
AI-102: Designing and Implementing a Microsoft Azure AI Solution [+]
AI-102: Designing and Implementing a Microsoft Azure AI Solution [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og ... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Studenten bør kunne installere linux, og kjenne til enkle linuxkommandoer som f.eks. «ls». Nybegynnere uten erfaring med linux anbefales å starte med emnet Praktisk Linux, som gir disse forkunnskapene. Innleveringer: Øvinger: 8 av 12 må være godkjent. Vurderingsform: Skriftlig eksamen 3t (60%) og mappe (40%), der alle øvinger er med i mappevurderingen. Ansvarlig: Helge Hafting Eksamensdato: 18.12.13 / 27.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten:- kan legge planer for en ny tjenermaskin- kan forklare bruk av ulike filsystemer, kvoter og aksesskontrollister FERDIGHETER:Kandidaten:- kan installere linux og vanlig tjenerprogramvare- kan vedlikeholde oppsettet på en tjenermaskin, som regel ved å tilpasse konfigurasjonsfiler- kan lete opp informasjon på nettet, for å løse drifts- og installasjonsproblemer GENERELL KOMPETANSE:Kandidaten:- kan vurdere linuxprogramvare for å dekke en organisasjons behov for tjenester Innhold:Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og automasjon.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Linux systemdrift 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 2 dager 14 000 kr
In this course, the students will design various data platform technologies into solutions that are in line with business and technical requirements. This can include on-... [+]
The students will also explore how to design data security including data access, data policies and standards. They will also design Azure data solutions which includes the optimization, availability and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Data Platform Architecture Considerations. -Core Principles of Creating Architectures-Design with Security in Mind-Performance and Scalability-Design for availability and recoverability-Design for efficiency and operations-Case Study Module 2: Azure Batch Processing Reference Architectures. -Lambda architectures from a Batch Mode Perspective-Design an Enterprise BI solution in Azure-Automate enterprise BI solutions in Azure-Architect an Enterprise-grade Conversational Bot in Azure Module 3: Azure Real-Time Reference Architectures. -Lambda architectures for a Real-Time Perspective-Lambda architectures for a Real-Time Perspective-Design a stream processing pipeline with Azure Databricks-Create an Azure IoT reference architecture Module 4: Data Platform Security Design Considerations. -Defense in Depth Security Approach-Network Level Protection-Identity Protection-Encryption Usage-Advanced Threat Protection Module 5: Designing for Resiliency and Scale. -Design Backup and Restore strategies-Optimize Network Performance-Design for Optimized Storage and Database Performance-Design for Optimized Storage and Database Performance-Incorporate Disaster Recovery into Architectures-Design Backup and Restore strategies Module 6: Design for Efficiency and Operations. -Maximizing the Efficiency of your Cloud Environment-Use Monitoring and Analytics to Gain Operational Insights-Use Automation to Reduce Effort and Error [-]
Les mer