IT-kurs
Du har valgt: Luleå kommune
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Luleå kommune ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to ensure that the organisation’s suppliers and their performances are managed appropriately to support the seamless provision of quality pr... [+]
Understand the purpose and key concepts of the Supplier Management Practice, elucidating its importance in managing supplier relationships and ensuring value delivery from third-party services. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn about the processes and activities of the Incident Management practice, and their roles within the service value chain. [+]
Understand the purpose and key concepts of Incident Management, including its role in restoring normal service operations swiftly following disruptions.   This eLearning is: Interactive Self-paced   Device-friendly   2-3 hour content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Virtuelt eller personlig 2 timer 2 450 kr
Hypotesetesting avgjør om datasett har signifikant forskjellig snitt eller variasjon for å bestemme rotårsaker, årsakssammenhenger eller effekt av endringer. [+]
Kurs i hypotesetesting I forbedringsarbeid og problemløsning tester vi hypoteser for å bestemme rotårsaker og årsakssammenhenger. Dette kurset lærer deg å utforme og teste hypoteser. Du får svar på spørsmål som: Er det signifikante forskjeller i gjennomsnitt eller variasjon? Har endringen vi har gjort medført en signifikant forbedring?   Kurset er for deg som vil: utforme hypotese basert på egne teorier om rotårsak eller årsakssammenhenger bestemme om datasett har signifikante forskjelliger i gjennomsnitt eller variasjon avgjøre om forbedringsarbeid har gitt signifikante forskjeller forstå årsakssammenhenger ved hjelp av statistikk   Du lærer følgende: Bruk av statistisk hypotesetesting Praktisk og statistisk signifikans Statistikk og sannsynlighet Utforme hypotese Velge Hypotesetest (type data, fordeling, statistikk av interesse, # populasjoner) Trekke konklusjon basert på p-verdi Type I og type II feil Vurdering av datautvalg og prøveantall Bruke av p-verdi Vi bruker praktiske eksempler og øvelser i undervisningen.     Kursholder Kursholder Sissel Pedersen Lundeby er IASSC (International association for Six Sigma certification) akkreditert kursholder (eneste i Norge per januar 2022): "This accreditation publically reflects that you have met the standards established by IASSC such that those who participate in a training program led by you can expect to receive an acceptable level of knowledge transfer consistent with the Lean Six Sigma belt Bodies of Knowledge as established by IASSC."  Hypotesetesting er et av verktøyene som benyttes innen Lean Six Sigma, og Sissel har bred erfaring med anvendelse av dette verktøyet.  Sissel er utdannet sivilingeniør i kjemiteknikk fra NTNU, og har mer enn 20 års erfaring innen produksjon og miljøteknologi. Hennes Lean Six Sigma opplæring startet i 2002, hos et amerikansk firma, hvor hun ble Black Belt sertifisert. I 2017 ble hun også Black Belt sertifisert gjennom IASSC. Sissel har svært god erfaring med å bruke Lean Six Sigma til forbedringer, og fokuserer på å skape målbare resultater. Kursene bruker praktiske, gjenkjennelige eksempler, og formidler Lean Six Sigma på en enkel, forståelig måte.      Tilbakemeldinger "Inspirerende, faglig dyktig, folkeliggjør et teoretisk fagområde" Espen Fjeld, Kommersiell direktør hos Berendsen "Faglig meget dyktig og klar fremføring. Morsom og skaper tillit" Jon Sørensen, Produksjonsleder hos Berendsen "10/10 flink til å nå alle" Erlend Stene, Salgsleder hos Berendsen "Tydelig og bra presentert. God til å kontrollspørre og lytte (sjekke forståelse)" Morten Bodding, Produksjonsleder hos Berendsen "Utgjorde en forskjell, engasjert og dyktig" Kursdeltager fra EWOS "Du er inspirerende, positiv og dyktig i faget" Kursdeltager fra EWOS "Jeg var veldig imponert over Sissels Lean Six Sigma kunnskap. Hun gjør det enkelt å identifisere forbedringer og skape resultater" Daryl Powell, Lean Manager, Kongsberg Maritime Subsea   Praktisk informasjon Kurset arrangeres på forespørsel fra bedrifter. Åpne kurs arrangeres ihht kurskalenderen. Kurset består av et nettmøte på 2 timer. [-]
Les mer
Oslo 5 dager 46 000 kr
21 Jul
08 Sep
10 Nov
https://www.glasspaper.no/kurs/sise-implementing-and-configuring-cisco-identity-services-engine/ [+]
SISE: Implementing and Configuring Cisco Identity Services Engine [-]
Les mer
Oslo 5 dager 30 000 kr
17 Nov
17 Nov
MasterClass: Hacking and Securing Windows Infrastructure with Paula Januszkiewicz [+]
MasterClass: Hacking and Securing Windows Infrastructure with Paula Januszkiewicz [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 5 dager 26 900 kr
01 Sep
01 Sep
24 Nov
Spring Cloud Development [+]
Spring Cloud Development [-]
Les mer
Oslo 2 dager 14 500 kr
01 Sep
01 Sep
MB-210: Microsoft Dynamics 365 for Sales [+]
MB-210: Microsoft Dynamics 365 for Sales [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course teaches developers how to create end-to-end solutions in Microsoft Azure [+]
. Students will learn how to implement Azure compute solutions, create Azure Functions, implement and manage web apps, develop solutions utilizing Azure storage, implement authentication and authorization, and secure their solutions by using KeyVault and Managed Identities. Students will also learn how to connect to and consume Azure services and third-party services, and include event- and message-based models in their solutions. The course also covers monitoring, troubleshooting, and optimizing Azure solutions.   TARGET AUDIENCE Students in this course are interested in Azure development or in passing the Microsoft Azure Developer Associate certification exam.   COURSE CONTENT Module 1: Creating Azure App Service Web Apps Students will learn how to build a web application on the Azure App Service platform. They will learn how the platform functions and how to create, configure, scale, secure, and deploy to the App Service platform. Azure App Service core concepts Creating an Azure App Service Web App Configuring and Monitoring App Service apps Scaling App Service apps Azure App Service staging environments Module 2: Implement Azure functions This module covers creating Functions apps, and how to integrate triggers and inputs/outputs in to the app. Azure Functions overview Developing Azure Functions Implement Durable Functions Module 3: Develop solutions that use blob storage Students will learn how Azure Blob storage works, how to manage data through the hot/cold/archive blob storage lifecycle, and how to use the Azure Blob storage client library to manage data and metadata. Azure Blob storage core concepts Managing the Azure Blob storage lifecycle Working with Azure Blob storage Module 4: Develop solutions that use Cosmos DB storage Students will learn how Cosmos DB is structured and how data consistency is managed. Students will also learn how to create Cosmos DB accounts and create databases, containers, and items by using a mix of the Azure Portal and the .NET SDK. Azure Cosmos DB overview Azure Cosmos DB data structure Working with Azure Cosmos DB resources and data Module 5: Implement IaaS solutions This module instructs students on how to use create VMs and container images to use in their solutions. It covers creating VMs, using ARM templates to automate resource deployment, create and manage Docker images, publishing an image to the Azure Container Registry, and running a container in Azure Container Instances. Provisioning VMs in Azure Create and deploy ARM templates Create container images for solutions Publish a container image to Azure Container Registry Create and run container images in Azure Container Instances Module 6: Implement user authentication and authorization Students will learn how to leverage the Microsoft Identity Platform v2.0 to manage authentication and access to resources. Students will also learn how to use the Microsoft Authentication Library and Microsoft Graph to authenticate a user and retrieve information stored in Azure, and how and when to use Shared Access Signatures. Microsoft Identity Platform v2.0 Authentication using the Microsoft Authentication Library Using Microsoft Graph Authorizing data operations in Azure Storage Module 7: Implement secure cloud solutions This module covers how to secure the information (keys, secrets, certificates) an application uses to access resources. It also covers securing application configuration information. Manage keys, secrets, and certificates by using the KeyVault API Implement Managed Identities for Azure resources Secure app configuration data by using Azure App Configuration Module 8: Implement API Management Students will learn how to publish APIs, create policies to manage information shared through the API, and to manage access to their APIs by using the Azure API Management service. API Management overview Defining policies for APIs Securing your APIs Module 9: Develop App Service Logic Apps This module teaches students how to use Azure Logic Apps to schedule, automate, and orchestrate tasks, business processes, workflows, and services across enterprises or organizations. Azure Logic Apps overview Creating custom connectors for Logic Apps Module 10: Develop event-based solutions Students will learn how to build applications with event-based architectures. Implement solutions that use Azure Event Grid Implement solutions that use Azure Event Hubs Implement solutions that use Azure Notification Hubs Module 11: Develop message-based solutions Students will learn how to build applications with message-based architectures. Implement solutions that use Azure Service Bus Implement solutions that use Azure Queue Storage queues Module 12: Monitor and optimize Azure solutions This module teaches students how to instrument their code for telemetry and how to analyze and troubleshoot their apps. Overview of monitoring in Azure Instrument an app for monitoring Analyzing and troubleshooting apps Implement code that handles transient faults Module 13: Integrate caching and content delivery within solutions Students will learn how to use different caching services to improve the performance of their apps. Develop for Azure Cache for Redis Develop for storage on CDNs [-]
Les mer
Oslo 3 dager 20 900 kr
08 Oct
08 Oct
17 Dec
Python Data Science [+]
Python Data Science [-]
Les mer
Nettkurs 4 timer 549 kr
Dette kurset er laget for deg som vil lære å bruke Google Analytics 4, og få innsikt i hvordan kundene dine bruker nettstedet eller appen din. Kurset varer i 4 timer og 5... [+]
Ønsker du å mestre Google Analytics 4 for å få dybdeinnsikt i kundeadferden på nettstedet eller appen din? Da er kurset "Google Analytics 4: Komplett", ledet av Espen Faugstad, perfekt for deg. Dette kurset er designet for å gi deg en helhetlig forståelse av Google Analytics 4, slik at du kan jobbe profesjonelt med dette kraftige analyseverktøyet. Kurset starter med grunnleggende om hvordan Google Analytics 4 fungerer og veileder deg gjennom installasjonen på din nettside. Du vil lære å konfigurere Google Analytics for å maksimere dets potensial, administrere brukere, spore nettstedsøk, og mye mer. I tillegg gir kurset deg en detaljert gjennomgang av standardrapporter og utforskninger som er tilgjengelige i Google Analytics 4. Mot slutten av kurset vil du dykke inn i mer avanserte temaer som opprettelse og sporing av egendefinerte hendelser, konverteringssporing, og hvordan du kan utnytte innsikter fra brukerdata for å forbedre dine digitale strategier. Dette kurset er din vei til å bli en ekspert i Google Analytics 4.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Installer Kapittel 3: Konfigurer Kapittel 4: Rapporter Kapittel 5: Utforsk Kapittel 6: Hendelser Kapittel 7: Avansert Kapittel 8: Avslutning   Varighet: 4 timer og 48 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer