IT-kurs
Du har valgt: Mölnlycke
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Mölnlycke ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
5 dager 25 500 kr
MS-500: Microsoft 365 Security Administrator [+]
MS-500: Microsoft 365 Security Administrator [-]
Les mer
5 dager 30 000 kr
MCA: Microsoft 365 Modern Desktop Administrator Associate - Boot Camp [+]
MCA: Microsoft 365 Modern Desktop Administrator Associate - Boot Camp [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
5 dager 45 000 kr
28 Jul
01 Sep
29 Sep
RH294: Red Hat System Administration III: Linux Automation with Ansible [+]
RH294: Red Hat System Administration III: Linux Automation with Ansible [-]
Les mer
Oslo 2 dager 16 900 kr
04 Sep
04 Sep
20 Nov
SAFe® 6.0 DevOps [+]
SAFe® DevOps Certification [-]
Les mer
Oslo 2 dager 16 900 kr
11 Sep
11 Sep
11 Dec
UX Foundation [+]
UX Foundation [-]
Les mer
Virtuelt eller personlig 3 timer 12 480 kr
Vi tilbyr kurs i Revit Structure basis 1. Du vil få en en grunnleggende kjennskap til å arbeide med Revit Structure, og til prosessen i samarbeidet med en arkitekt basert... [+]
Agenda:• Introduksjon til BIM• Link av Revit-modeller• Koordinering av modeller• Utarbeidelse av generisk modell• Arbeide med eksisterende families• Håndtering av forandringer i grunnlaget• Snitt og detaljer• Skjemaer og uttrekk• Oppsetning til print [-]
Les mer
Oslo 2 dager 11 900 kr
24 Sep
24 Sep
Pivottabeller og rapportering i Excel [+]
Pivottabeller og rapportering i Excel [-]
Les mer
Oslo Trondheim Og 1 annet sted 5 dager 34 000 kr
18 Aug
25 Aug
25 Aug
TOGAF® EA Course Combined [+]
TOGAF® EA Course Combined [-]
Les mer
Oslo 3 dager 20 900 kr
17 Sep
17 Sep
17 Dec
Introduction to C# and .NET [+]
Introduction to C# and .NET [-]
Les mer
Nettkurs 2 190 kr
På dette kurset ser vi på hvordan man kan lage egne tittelfelt, hvordan informasjonen vi legger inn i partene kan hentes i tittelfelt og stykkliste. Jo mer man kan automa... [+]
Bruker du den vanlige Inventor-malfilen.idw fortsatt, så trenger du kanskje å gjøre den til din egen. Vil du ha A-A (1:20) plassert fast under et view, istedenfor å alltid flytte den under manuelt? Vil du ha lagt til faste skaleringer, eller holder det med de få som ligger i templaten?Er det tykk linjetykkelse i tittelfelt-rammen?Får du Style Conflict- warning hver gang du starter en ny template?Endrer du alltid noe manuelt i tegningen? Du vil få svar på alle disse spørsmålene i dette kurset!   HOVEDPUNKTER: lage eget tittelfelt sette inn logo i tittelfeltet opprette nytt material-bibliotek, og lage nye materialer lage Custom Properties i part, og få dem inn i stykkliste unngå å få Style Conflict-advarselen hver gang du oppretter en ny fil bli kjent med Styles Editor lagre endringer i Styles, dvs endringer i stykkliste, linjetykkelser, stykk-lister, dimensjoner, farger osv. litt om Project-oppsett [-]
Les mer