IT-kurs
Du har valgt: Møre og Romsdal
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Møre og Romsdal ) i IT-kurs
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Create, Deliver and Support dekker «kjernen» i ITIL®, aktiviteter rundt administrasjon av tjenester, og utvider omfanget av ITIL® til å omfatte «oppre... [+]
Kurset fokuserer på integrering av forskjellige verdistrømmer og aktiviteter for å lage, levere og støtte IT-aktiverte produkter og tjenester, samtidig som den dekker støtte for praksis, metoder og verktøy. Kurset gir kandidatene forståelse for tjenestekvalitet og forbedringsmetoder. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Specialist: Create, Deliver and Support e-læring (engelsk) i 12 måneder. ITIL® 4 Specialist: Create, Deliver and Support online voucher til sertifiseringstest.  Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Nettkurs 12 måneder 11 500 kr
ITIL® er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. [+]
ITIL® 4 Foundation-kurset er en introduksjon til ITIL® 4. Kurset lar kandidater se på IT-tjenestestyring gjennom en ende-til-ende driftsmodell, som inkluderer oppretting, levering og kontinuerlig forbedring av IT-relaterte produkter og tjenester. E-læringskurset inneholder 12 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Foundation e-læring (engelsk) i 12 måneder. ITIL® Foundation online voucher til sertifiseringstest + digital ITIL Foundation bok Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. Sertifiseringen består av: 40 spørsmål Multiple Choice 60 minutter + 15 minutter til rådighet dersom du ikke har engelsk som morsmål For å bestå må du ha minimum 26 riktige (65%) Ingen hjelpemidler tillatt ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Oslo 5 dager 27 500 kr
01 Sep
01 Sep
20 Oct
AZ-305: Microsoft Azure Architect Design [+]
AZ-305: Microsoft Azure Architect Design [-]
Les mer
Sentrum 3 dager 12 300 kr
Trenger du å bygge opp store og avanserte regneark? Ønsker du å lage rapporter og beregninger på store tallgrunnlag? Vil du finne ut hvordan du kan effektivisere arbe... [+]
Trenger du å bygge opp store og avanserte regneark? Ønsker du å lage rapporter og beregninger på store tallgrunnlag? Vil du finne ut hvordan du kan effektivisere arbeidet ditt i Excel? Ønsker du å lære de første stegene mot automatiserte rapporter? Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Generelt om regneark Om regneark og infrastruktur Bruke tastatur og hurtigtaster effektiv Absolutte referanser og definerte navn   Funksjoner Mer om funksjoner, hvis, antall.hvis, summer.hvis.sett Lær om "må ha funksjonen" Finn.rad [Vlookup] Andre funksjoner for spesielle oppgaver   Avansert formatering Spesiell formatering – dato, tekst og egendefinert Betinget formatering og cellestiler   Dag 2    Lister og tabeller Viktige regler og råd Bruk av autofilter og sortering Tabellfunksjonalitet Validering ved inntasting Beregninger av store datamengder via gode funksjoner   Pivottabell Hva er pivottabell og hvordan lage raske og enkle rapporter Utvidede muligheter i Pivot som grupperinger, vis verdier som og slicer   Dag 3   Metoder for dataimport Direkte import fra database   Innføring til makro Spille inn /registrere makro Ord/uttrykk og VBA editor   Datavask Slette tommer rader, fylle tomme celler Bruk av funksjoner for å klargjøre datagrunnlag Identifisere og håndtere avvik i grunnlag   Alternative temaer (hvis tid) Tips til diagrammer Hva hvis analyse Konsolidering   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Oslo 5 dager 39 500 kr
22 Sep
22 Sep
17 Nov
CCSP: Certified Cloud Security Professional [+]
CCSP: Certified Cloud Security Professional [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
04 Sep
23 Oct
04 Dec
Vi går gjennom oppbygging av pivottabeller og pivotdiagrammer og jobber oss inn i mer detaljerte og avanserte måter å presentere dataene samt tips og triks for å få tabel... [+]
Datagrunnlaget Gruppering Formatering Tallformater Visningsalternativer Feltinnstillinger Beregnede felt Bruk av flere pivottabeller i samme arbeidsbok Slicere som virker på flere pivottabeller eller pivotdiagrammer Tabellfunksjonalitet   Analyse av pivotdiagram Bruk av pivotdiagram i andre programmer   et er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder.   [-]
Les mer
Nettkurs 2 190 kr
På dette kurset ser vi på hvordan man kan lage egne tittelfelt, hvordan informasjonen vi legger inn i partene kan hentes i tittelfelt og stykkliste. Jo mer man kan automa... [+]
Bruker du den vanlige Inventor-malfilen.idw fortsatt, så trenger du kanskje å gjøre den til din egen. Vil du ha A-A (1:20) plassert fast under et view, istedenfor å alltid flytte den under manuelt? Vil du ha lagt til faste skaleringer, eller holder det med de få som ligger i templaten?Er det tykk linjetykkelse i tittelfelt-rammen?Får du Style Conflict- warning hver gang du starter en ny template?Endrer du alltid noe manuelt i tegningen? Du vil få svar på alle disse spørsmålene i dette kurset!   HOVEDPUNKTER: lage eget tittelfelt sette inn logo i tittelfeltet opprette nytt material-bibliotek, og lage nye materialer lage Custom Properties i part, og få dem inn i stykkliste unngå å få Style Conflict-advarselen hver gang du oppretter en ny fil bli kjent med Styles Editor lagre endringer i Styles, dvs endringer i stykkliste, linjetykkelser, stykk-lister, dimensjoner, farger osv. litt om Project-oppsett [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 3 dager 21 000 kr
08 Sep
08 Sep
15 Dec
ITIL® Strategist - Direct, Plan and Improve [+]
ITIL® Strategist - Direct, Plan and Improve [-]
Les mer
Bedriftsintern 3 dager 13 500 kr
The SQL Master Class for Java Developers training is aimed to level up your SQL skills with techniques such as Window Functions, recursive queries, Pivoting, JSON process... [+]
Throughout four years of teaching my High-Performance Java Persistence course, I came to realize that there is so much Java developers can learn about the latest SQL features introduced by Oracle, SQL Server, PostgreSQL, or MySQL.This training spans over the course of 2 days and covers the Top 4 relational database systems: Oracle, SQL Server, PostgreSQL, and MySQL.From execution plans to the best way to paginate data, this training explains lesser-known techniques such as LATERAL JOIN, CROSS APPLY, as well as Derived Tables, Common Table Expressions, recursive queries, and the amazing Window Functions, PIVOT, or UPSERT statements.Last but not least, we are going to learn that, not only modern databases support JSON column types, but you can combine JSON structures with the traditional relational ones, therefore getting the best of both worlds.All examples are inspired by real-life scenarios, and they come in a GitHub repository for which attendees have exclusive and unlimited time access.At the end of these two days of training, the attendees will be better prepared to solve various data-intensive tasks using all these awesome SQL features that have been over the past 20 years.Agenda  Day 1Introduction - 1h 30m    - Beyond SQL:92    - SQL Parsing    - SQL Operation Order    - TOP-N queries    - OFFSET pagination    - Keyset PaginationSubqueries - 1h 15m    - EXISTS and NOT EXISTS    - IN and NOT IN    - ANY and ALL    - INSERT with subqueries    - Aggregation with subqueries   Joins - 1h 15m    - CROSS JOIN    - INNER and LEFT/RIGHT OUTER JOIN    - FULL OUTER JOIN    - NATURAL JOIN    - LATERAL JOIN and CROSS APPLYDay 2Window Functions - 1h 30m    - Analytics queries and window frame processing    - ROW_NUMBER, RANK, and DENSE_RANK    - FIRST_VALUE, LAST_VALUE, LEAD and LAG    - CUME_DIST and PERCENT_RANK    - PERCENTILE_DISC and PERCENTILE_CONTDerived Tables, CTE, Hierarchical Queries - 1h 30m    - Derived Tables    - CTE (Common Table Expressions)    - Recursive CTE    - Hierarchical queries   PIVOT, UNPIVOT, FILTER, and CASE - 1h    - CASE Expressions    - PostgreSQL FILTER Expressions    - PIVOT    - UNPIVOTDay 3UPSERT and MERGE - 30m- MERGE statements- UPSERT statements   JSON processing - 1h 30m    - Schemaless data structures and JSON    - JSON queries    - EAV Model   Transactions and Concurrency Control - 2h    - ACID, 2PL, MVCC    - Isolation Levels and anomalies    - Pessimistic and optimistic locking    - SKIP_LOCKED, NOWAIT [-]
Les mer
3 dager
Dette er et grunnleggende kurs i JavaScript-biblioteket jQuery. Kurset passer godt for deg som skal jobbe med interaktive web-applikasjoner og nettsider, skal utvikle et ... [+]
  Kursinnhold Dette er et grunnleggende kurs i JavaScript-biblioteket jQuery. Kurset passer godt for deg som skal jobbe med interaktive web-applikasjoner og nettsider, skal utvikle et webbasert brukergrensesnitt eller vil gjøre JacaScriptene dine mer effektive og Ajax-baserte. Målsetting Etter gjennomført kurs vil deltakerne være fortrolige med å bruke jQuery og jQuery UI til å utvikle eller forbedre funksjonalitet og interaktivitet på webbaserte grensesnitt.   Kursinnhold Kort introduksjon til HTML og CSS Introduksjon til JavaScript Hvorfor bruke jQuery - styrker og svakheter jQuery og Dokumentobjektmodellen (DOM), valg av objekter Utføre handlinger med valgte DOM-objekter Bruk av jQuery filtere Formatere tabeller og skjemaer med jQuery Validering av skjemaer med jQuery Levende sider med bruk av jQuery Events Animasjoner og visuelle effekter med jQuery Bildebehandling med jQuery  - bygging av interaktive gallerier Brukergrensesnitt med jQuery UI Gjennomføring Kurset gjennomføres med en kombinasjon av online læremidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er hands-on øvelsesoppgaver til hovedtemaene som gjennomgås. [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til webpublisering, HTML og XHTML, CSS, prinsipper for webdesign, DOM og JavaScript, XML (SVG og RSS), multimedia på web (grafikk, bilder, lyd og video), int... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Større og mindre øvinger tilsvarende 8 øvinger, hvor 6 må være godkjent før endelig karakter settes. Personlig veileder: ja Vurderingsform: Karakteren i faget settes på grunnlag av to eksamensdeler - et prosjekt (60 %) og en netteksamen (40 %). Prosjektet går over 5 uker og gjennomføres som gruppearbeid. I vurderingen av prosjektet teller prosess, dokumentasjon og produkt. Individuelle karakterer kan gis ved manglende deltagelse. Netteksamen varer 1 time og består av både flervalgs- og fritekstspørsmål. Både prosjekt, netteksamen og obligatoriske øvinger må være bestått for å få karakter i faget. Klageadgang gjelder for hver enkelt eksamensdel. Ansvarlig: Atle Nes Eksamensdato: 11.12.13 / 14.05.14         Læremål: Etter å ha gjennomført emnet Webutvikling 1 skal studenten ha følgende læringsutbytte: KUNNSKAPER:Kandidaten:- forstår klient-tjener-arkitektur i konteksten nettleser og webtjener.- kjenner til forskjellen på statiske og dynamiske websider.- kjenner til HTTP-protokollen og kryptert kommunikasjon med HTTPS.- forstår oppbygningen til en URL, domenenavn og porter.- vet forskjellen på absolutt og relativ adressering.- kjenner til virkemåten til søkemotorer.- forstår viktigheten av å følge web-standarder. FERDIGHETER:Kandidaten:- kan utvikle et funksjonelt nettsted ved bruk en enkel testeditor og HTML eller XHTML.- kan laste opp nettstedet til webtjener med SFTP.- kan endre utseendet på nettstedet med intern eller ekstern CSS.- kan bruke DOM og JavaScript til å lage dynamiske nettsider.- kan legge til multimedia (grafikk, bilder, lyd, video) på nettstedet.- kan integrere eksterne tjenester på nettstedet. GENERELL KOMPETANSE:Kandidaten:- får en grunnleggende forståelse av hvordan et moderne nettsted er oppbygd. Innhold:Introduksjon til webpublisering, HTML og XHTML, CSS, prinsipper for webdesign, DOM og JavaScript, XML (SVG og RSS), multimedia på web (grafikk, bilder, lyd og video), integrasjon av eksterne tjenester.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Webutvikling 1 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. [+]
Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform. Learning Objectives This course teaches participants the following skills: Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform Use Cloud SQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform Employ BigQuery and Cloud Datalab to carry out interactive data analysis Train and use a neural network using TensorFlow Employ ML APIs Choose between different data processing products on the Google Cloud Platform Course Outline Module 1: Introducing Google Cloud Platform -Google Platform Fundamentals Overview-Google Cloud Platform Big Data Products Module 2: Compute and Storage Fundamentals -CPUs on demand (Compute Engine)-A global filesystem (Cloud Storage)-CloudShell-Lab: Set up an Ingest-Transform-Publish data processing pipeline Module 3: Data Analytics on the Cloud -Stepping-stones to the cloud-CloudSQL: your SQL database on the cloud-Lab: Importing data into CloudSQL and running queries-Spark on Dataproc-Lab: Machine Learning Recommendations with Spark on Dataproc Module 4: Scaling Data Analysis -Fast random access-Datalab-BigQuery-Lab: Build machine learning dataset Module 5: Machine Learning -Machine Learning with TensorFlow-Lab: Carry out ML with TensorFlow-Pre-built models for common needs-Lab: Employ ML APIs Module 6: Data Processing Architectures -Message-oriented architectures with Pub/Sub-Creating pipelines with Dataflow-Reference architecture for real-time and batch data processing Module 7: Summary -Why GCP?-Where to go from here-Additional Resources [-]
Les mer