IT-kurs
Sør-Trøndelag
Du har valgt: Orkdal
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Orkdal ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Virtuelt eller personlig 1 dag 3 120 kr
Målsetning for kurset: Opparbeide ferdigheter i å navigere, kommunisere og hente ut informasjon fra BIM-modeller i IFC-formatet med bruk av Solibri Anywhere. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt.NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Solibri Anywhere og Site   På kurset vil du lære å: Sammenstille flere IFC-modeller og navigere i disse Velge ut grupper av objekter for nærmere studier Legge inn snitt, måle, markere og opprette slides fra visninger av modellen Opprette rapporter og kommentere «issues» i Excel og BCF-format Se på resultatet av utførte regelsjekker i modellen Se på resultatet av utførte informasjons- og mengdeuttak fra modellen Høste informasjon og mengder fra modellen basert på eksisterende maler og klassifikasjoner Skape egne klassifikasjoner og definisjoner for megndeuttak   Dette er et populært kurs, meld deg på nå! Spesialtilpasset kurs: NTI anbefaler spesialtilpassede kurs for bedrifter som planlegger å sende to eller flere deltakere på Solibri-kurs. Grunnen til dette er at Solibri brukes av mange forskjellige aktører og profesjoner i BAE-bransjen, og følgelig blir de åpne kursene ofte for generelle for enkelte kursdeltakere. I et spesialtilpasset kurs vil vår kurskonsulent kartlegge fokusområdene i forkant av kurset, og gjennomføre kurset i henhold til selskapets behov, gjerne basert på kundens egne modeller. Utbyttet av kurset blir følgelig mye større.  Ta kontakt med oss på telefon 483 12 300, epost: salg-no@nti.biz eller les mer på www.nti.biz   [-]
Les mer
Virtuelt eller personlig 3 dager 11 800 kr
26 Aug
23 Sep
28 Oct
Kurset vil gi en grundig gjennomgang av hovedkommandoene i AutoCAD. Deltagerne vil også få nødvendig forståelse for prinsipper og arbeidsmetoder i programmet. [+]
Kurset vil gi deg en grunnleggende forståelse i bruk av tegne- og konstruksjonsprogrammet AutoCAD. AutoCAD 2D Grunnkurs:• Hovedprinsipper i AutoCAD's brukergrensesnitt• Oppretting og lagring av tegninger• Tegne- og editeringskommandoer• Hjelpefunksjoner for å tegne nøyaktig• Skjermstyring• Lagoppbygging og struktur• Målsetting, teksting og skravering• Symbol- og blokkhåndtering• Layout/plotting   Etter gjennomført kurs skal kursdeltagerne bl.a. kunne bruke AutoCAD til å: • Opprette tegninger• Utføre de vanligste tegne- og editeringsfunksjoner• Bruke og forstå lagoppbygging• Målsette og påføre tekst• Skrive ut tegning i målestokk  [-]
Les mer
1 dag 9 500 kr
AZ-1001: Deploy and manage containers using Azure Kubernetes Service [+]
AZ-1001: Deploy and manage containers using Azure Kubernetes Service [-]
Les mer
Oslo 1 dag 9 900 kr
22 Sep
22 Sep
01 Dec
ITIL® 4 Practitioner: Change enablement [+]
ITIL® 4 Practitioner: Change Enablement [-]
Les mer
Oslo 3 dager 17 900 kr
10 Nov
10 Nov
COBIT 2019 Foundation [+]
COBIT 2019 Foundation [-]
Les mer
Nettkurs 10 timer 549 kr
I dette kurset lærer du CSS fra scratch til viderekommen. Kurset dekker alt du hadde lært om CSS i løpet av en moderne teknologiutdanning, og når du er ferdig med kurset ... [+]
Bli en mester i Cascading Style Sheets (CSS) med dette omfattende kurset fra Espen Faugstad hos Utdannet.no. Kurset "CSS: Komplett" tar deg fra grunnleggende til avanserte konsepter i CSS, som er avgjørende for moderne webutvikling. Uansett om du er nybegynner eller har litt forhåndskunnskap, vil kurset gi deg ferdighetene til å tilpasse eksisterende CSS-kode eller skrive din egen fra bunnen av. Utforsk hvordan du kan bruke typografi, farger, og former for å skape engasjerende og estetisk tiltalende brukeropplevelser. Lær om bruk av selektorer, boksmodellen, tekststilsetting, og skap moderne weboppsett med Flexbox og Grid. Kurset vil også guide deg gjennom å lage din egen portfolio-nettside, en praktisk anvendelse av dine nyinnlærte CSS-ferdigheter. Ved kursets slutt vil du ha en grundig forståelse av CSS og evnen til å anvende det effektivt i dine webprosjekter. Dette er Skandinavias mest omfattende kurs i CSS, og gir deg kompetansen til å skape attraktive muligheter i webutviklingsverdenen.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Kjernekompetanse Kapittel 3: Boksmodellen Kapittel 4: Tekst Kapittel 5: Utseende Kapittel 6: Float Kapittel 7: Positioning Kapittel 8: Flexbox Kapittel 9: Grid Kapittel 10: Responsiv design Kapittel 11: Resterende Kapittel 12: Avslutning   Varighet: 9 timer og 52 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Kurset som får deg godt i gang med Inventor [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon. Inventor grunnkurs Her er et utvalg av temaene du vil lære på kurset: Generelt Part-modellering (3D-komponenter) Samlinger Skjelettmodellering på basisnivå Tegninger i 2D Autodesk Inventor 3D CAD programvare brukes til produktdesign, rendering og simuleringer. Løsningen er viktig når smarte ideer skal bli til produksjonsklar design, og for å utvikle fremtidens produkter og tjenester. Inventor tilfører større kvalitet til utviklingsprosesser med smarte funksjoner som optimaliserer, gjør det enkelt å «se» modellen, og simulere hvordan konseptet/prototypen vil fungere i bruk.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course teaches developers how to create end-to-end solutions in Microsoft Azure [+]
. Students will learn how to implement Azure compute solutions, create Azure Functions, implement and manage web apps, develop solutions utilizing Azure storage, implement authentication and authorization, and secure their solutions by using KeyVault and Managed Identities. Students will also learn how to connect to and consume Azure services and third-party services, and include event- and message-based models in their solutions. The course also covers monitoring, troubleshooting, and optimizing Azure solutions.   TARGET AUDIENCE Students in this course are interested in Azure development or in passing the Microsoft Azure Developer Associate certification exam.   COURSE CONTENT Module 1: Creating Azure App Service Web Apps Students will learn how to build a web application on the Azure App Service platform. They will learn how the platform functions and how to create, configure, scale, secure, and deploy to the App Service platform. Azure App Service core concepts Creating an Azure App Service Web App Configuring and Monitoring App Service apps Scaling App Service apps Azure App Service staging environments Module 2: Implement Azure functions This module covers creating Functions apps, and how to integrate triggers and inputs/outputs in to the app. Azure Functions overview Developing Azure Functions Implement Durable Functions Module 3: Develop solutions that use blob storage Students will learn how Azure Blob storage works, how to manage data through the hot/cold/archive blob storage lifecycle, and how to use the Azure Blob storage client library to manage data and metadata. Azure Blob storage core concepts Managing the Azure Blob storage lifecycle Working with Azure Blob storage Module 4: Develop solutions that use Cosmos DB storage Students will learn how Cosmos DB is structured and how data consistency is managed. Students will also learn how to create Cosmos DB accounts and create databases, containers, and items by using a mix of the Azure Portal and the .NET SDK. Azure Cosmos DB overview Azure Cosmos DB data structure Working with Azure Cosmos DB resources and data Module 5: Implement IaaS solutions This module instructs students on how to use create VMs and container images to use in their solutions. It covers creating VMs, using ARM templates to automate resource deployment, create and manage Docker images, publishing an image to the Azure Container Registry, and running a container in Azure Container Instances. Provisioning VMs in Azure Create and deploy ARM templates Create container images for solutions Publish a container image to Azure Container Registry Create and run container images in Azure Container Instances Module 6: Implement user authentication and authorization Students will learn how to leverage the Microsoft Identity Platform v2.0 to manage authentication and access to resources. Students will also learn how to use the Microsoft Authentication Library and Microsoft Graph to authenticate a user and retrieve information stored in Azure, and how and when to use Shared Access Signatures. Microsoft Identity Platform v2.0 Authentication using the Microsoft Authentication Library Using Microsoft Graph Authorizing data operations in Azure Storage Module 7: Implement secure cloud solutions This module covers how to secure the information (keys, secrets, certificates) an application uses to access resources. It also covers securing application configuration information. Manage keys, secrets, and certificates by using the KeyVault API Implement Managed Identities for Azure resources Secure app configuration data by using Azure App Configuration Module 8: Implement API Management Students will learn how to publish APIs, create policies to manage information shared through the API, and to manage access to their APIs by using the Azure API Management service. API Management overview Defining policies for APIs Securing your APIs Module 9: Develop App Service Logic Apps This module teaches students how to use Azure Logic Apps to schedule, automate, and orchestrate tasks, business processes, workflows, and services across enterprises or organizations. Azure Logic Apps overview Creating custom connectors for Logic Apps Module 10: Develop event-based solutions Students will learn how to build applications with event-based architectures. Implement solutions that use Azure Event Grid Implement solutions that use Azure Event Hubs Implement solutions that use Azure Notification Hubs Module 11: Develop message-based solutions Students will learn how to build applications with message-based architectures. Implement solutions that use Azure Service Bus Implement solutions that use Azure Queue Storage queues Module 12: Monitor and optimize Azure solutions This module teaches students how to instrument their code for telemetry and how to analyze and troubleshoot their apps. Overview of monitoring in Azure Instrument an app for monitoring Analyzing and troubleshooting apps Implement code that handles transient faults Module 13: Integrate caching and content delivery within solutions Students will learn how to use different caching services to improve the performance of their apps. Develop for Azure Cache for Redis Develop for storage on CDNs [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 26 500 kr
29 Sep
29 Sep
27 Oct
AZ-204: Developing Solutions for Microsoft Azure [+]
AZ-204: Developing Solutions for Microsoft Azure [-]
Les mer
Oslo Bergen 3 dager 20 900 kr
10 Sep
10 Sep
22 Sep
Implementing REST Services using Web API [+]
Implementing REST Services using Web API [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
10 timer 6 000 kr
Basic Excel training [+]
This is a basic course in Excel http://www.google.com [-]
Les mer