IT-kurs
Sør-Trøndelag
Du har valgt: Orkdal
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Orkdal ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
10 timer 6 000 kr
Basic Excel training [+]
This is a basic course in Excel http://www.google.com [-]
Les mer
Oslo 1 dag 7 500 kr
15 Aug
15 Aug
17 Oct
Achieve More med MS Outlook (tidl. FTG) [+]
Achieve More med MS Outlook (tidl. FTG) [-]
Les mer
Nettkurs 2 190 kr
På dette kurset ser vi på hvordan man kan lage egne tittelfelt, hvordan informasjonen vi legger inn i partene kan hentes i tittelfelt og stykkliste. Jo mer man kan automa... [+]
Bruker du den vanlige Inventor-malfilen.idw fortsatt, så trenger du kanskje å gjøre den til din egen. Vil du ha A-A (1:20) plassert fast under et view, istedenfor å alltid flytte den under manuelt? Vil du ha lagt til faste skaleringer, eller holder det med de få som ligger i templaten?Er det tykk linjetykkelse i tittelfelt-rammen?Får du Style Conflict- warning hver gang du starter en ny template?Endrer du alltid noe manuelt i tegningen? Du vil få svar på alle disse spørsmålene i dette kurset!   HOVEDPUNKTER: lage eget tittelfelt sette inn logo i tittelfeltet opprette nytt material-bibliotek, og lage nye materialer lage Custom Properties i part, og få dem inn i stykkliste unngå å få Style Conflict-advarselen hver gang du oppretter en ny fil bli kjent med Styles Editor lagre endringer i Styles, dvs endringer i stykkliste, linjetykkelser, stykk-lister, dimensjoner, farger osv. litt om Project-oppsett [-]
Les mer
Nettkurs 40 minutter 7 000 kr
MoP®, er et rammeverk og en veiledning for styring av prosjekter og programmer i en portefølje. Sertifiseringen MoP Foundation gir deg en innføring i porteføljestyring me... [+]
Du vil få tilsendt en «Core guidance» bok og sertifiserings-voucher i en e-post fra Peoplecert. Denne vil være gyldig i ett år. Tid for sertifiseringstest avtales som beskrevet i e-post med voucher. Eksamen overvåkes av en web-basert eksamensvakt.   Eksamen er på engelsk. Eksamensformen er multiple choice 50 spørsmål skal besvares, og du består ved 50% korrekte svar (dvs 25 av 50 spørsmål). Deltakerne har 40 minutter til rådighet på eksamen.  Ingen hjelpemidler er tillatt.     [-]
Les mer
Nettkurs 10 timer 549 kr
I dette kurset lærer du CSS fra scratch til viderekommen. Kurset dekker alt du hadde lært om CSS i løpet av en moderne teknologiutdanning, og når du er ferdig med kurset ... [+]
Bli en mester i Cascading Style Sheets (CSS) med dette omfattende kurset fra Espen Faugstad hos Utdannet.no. Kurset "CSS: Komplett" tar deg fra grunnleggende til avanserte konsepter i CSS, som er avgjørende for moderne webutvikling. Uansett om du er nybegynner eller har litt forhåndskunnskap, vil kurset gi deg ferdighetene til å tilpasse eksisterende CSS-kode eller skrive din egen fra bunnen av. Utforsk hvordan du kan bruke typografi, farger, og former for å skape engasjerende og estetisk tiltalende brukeropplevelser. Lær om bruk av selektorer, boksmodellen, tekststilsetting, og skap moderne weboppsett med Flexbox og Grid. Kurset vil også guide deg gjennom å lage din egen portfolio-nettside, en praktisk anvendelse av dine nyinnlærte CSS-ferdigheter. Ved kursets slutt vil du ha en grundig forståelse av CSS og evnen til å anvende det effektivt i dine webprosjekter. Dette er Skandinavias mest omfattende kurs i CSS, og gir deg kompetansen til å skape attraktive muligheter i webutviklingsverdenen.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Kjernekompetanse Kapittel 3: Boksmodellen Kapittel 4: Tekst Kapittel 5: Utseende Kapittel 6: Float Kapittel 7: Positioning Kapittel 8: Flexbox Kapittel 9: Grid Kapittel 10: Responsiv design Kapittel 11: Resterende Kapittel 12: Avslutning   Varighet: 9 timer og 52 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Nettstudie 1 semester 4 980 kr
På forespørsel
Nettstrukturer: LAN, VLAN, VPN, trådløst nett, virtuelle nett Nettutstyr: Svitsj, ruter, brannmur, basestasjon. Nettfunksjoner: Ruting, filtrering, tunnelering, port forw... [+]
Studieår: 2013-2014   Gjennomføring: Høst Antall studiepoeng: 5.0 Forutsetninger: Kunnskaper om grunnleggende datakommunikasjon, tilsvarende faget "Datakommunikasjon". Innleveringer: 8 av 12 øvinger må være godkjent for å få gå opp til eksamen. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, individuell, 3 timer.  Ansvarlig: Olav Skundberg Eksamensdato: 16.12.13         Læremål: KUNNSKAPER:Kandidaten:- kan redegjøre for struktur og virkemåte for ulike typer lokale nettverk og nettverkskomponenter- kan redegjøre for kryptering og andre sikkerhetsmekanismer i kablet og trådløst nettverk- kan redegjøre for oversetting mellom interne og offentlige IP-adresser- kan redegjøre for nettverksadministrasjon og fjernpålogging på nettverksenheter FERDIGHETER:Kandidaten:- kan analysere pakketrafikk- kan konfigurere nettverk med virtuelle datamaskiner- kan administrere virtuelt nettverk og sette opp interne lukkede nettverk.- kan filtrere nettverkstrafikk i brannmur basert port, adresser og eksisterende forbindelser GENERELL KOMPETANSEKandidaten:- er bevisst på helhetlig samspill mellom de ulike teknologiene Innhold:Nettstrukturer: LAN, VLAN, VPN, trådløst nett, virtuelle nett Nettutstyr: Svitsj, ruter, brannmur, basestasjon. Nettfunksjoner: Ruting, filtrering, tunnelering, port forwarding, NAT, DHCP, IPv6. Nettadministrasjon: Fjernpålogging og trafikkanalyse.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Dette faget går: Høst 2013    Fag Nettverksteknologi 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Oslo 2 dager 16 900 kr
25 Sep
25 Sep
18 Dec
htWeb Security for Developers [+]
httpWeb Security for Developers [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excel for Økonomer - elæringskurs [+]
Excel for Økonomer - elæringskurs [-]
Les mer
Oslo 2 dager 16 900 kr
04 Sep
04 Sep
20 Nov
SAFe® 6.0 DevOps [+]
SAFe® DevOps Certification [-]
Les mer
Oslo 5 dager 26 900 kr
08 Sep
08 Sep
01 Dec
Modern C++20 Development [+]
Modern C++20 Development [-]
Les mer
Oslo 4 dager 22 500 kr
08 Sep
08 Sep
10 Nov
DP-100: Designing and Implementing a Data Science Solution on Azure [+]
https://www.glasspaper.no/kurs/dp-100/ [-]
Les mer