IT-kurs
Østfold
Du har valgt: Råde
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Råde ) i IT-kurs
 

Nettkurs 12 måneder 11 500 kr
ITIL® er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. [+]
ITIL® 4 Foundation-kurset er en introduksjon til ITIL® 4. Kurset lar kandidater se på IT-tjenestestyring gjennom en ende-til-ende driftsmodell, som inkluderer oppretting, levering og kontinuerlig forbedring av IT-relaterte produkter og tjenester. E-læringskurset inneholder 12 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Foundation e-læring (engelsk) i 12 måneder. ITIL® Foundation online voucher til sertifiseringstest + digital ITIL Foundation bok Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. Sertifiseringen består av: 40 spørsmål Multiple Choice 60 minutter + 15 minutter til rådighet dersom du ikke har engelsk som morsmål For å bestå må du ha minimum 26 riktige (65%) Ingen hjelpemidler tillatt ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Create, Deliver and Support dekker «kjernen» i ITIL®, aktiviteter rundt administrasjon av tjenester, og utvider omfanget av ITIL® til å omfatte «oppre... [+]
Kurset fokuserer på integrering av forskjellige verdistrømmer og aktiviteter for å lage, levere og støtte IT-aktiverte produkter og tjenester, samtidig som den dekker støtte for praksis, metoder og verktøy. Kurset gir kandidatene forståelse for tjenestekvalitet og forbedringsmetoder. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Specialist: Create, Deliver and Support e-læring (engelsk) i 12 måneder. ITIL® 4 Specialist: Create, Deliver and Support online voucher til sertifiseringstest.  Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Oslo Bergen Og 1 annet sted 2 timer 15 900 kr
11 Sep
11 Sep
23 Oct
Leading SAFe® 6.0 [+]
Leading SAFe® [-]
Les mer
Oslo 4 dager 22 500 kr
01 Sep
01 Sep
03 Nov
DP-300: Administering Microsoft Azure SQL Solutions [+]
DP-300: Administering Microsoft Azure SQL Solutions [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Virtuelt klasserom 2 dager 17 500 kr
This TOGAF® 9.2 Training Course: Level 1 Foundation introduces the latest version of TOGAF and will help you to prepare to take The Open Group's examination leading to t... [+]
COURSE OVERVIEW This course introduces all of thetopics defined as the Learning Outcomes upon which the TOGAF® 9.2  Part 1 Examination is based to the level needed to pass the examination. Candidates should be aware that this course does not address these topics in detail and additional study is required. This TOGAF® for Practitioners - Level 1 Foundation course is accredited by The Open Group. TOGAF® is a registered trademark of The Open Group. TARGET AUDIENCE Enterprise Architect Solution Architect ERP/SAP Architect Data Architect Technical Architect Security Architect EA/ Governance Consultant Business Analyst.   COURSE CONTENT The 2 day course introduces many of the features that are common to TOGAF® 9.2: The business rationale for Enterprise Architecture and TOGAF® The TOGAF® Architecture Development Method and its deliverables, including Business, Data, Applications and Technology Architecture The Enterprise Continuum Enterprise Architecture Governance Architecture Principles and their development Architecture Views and Viewpoints An Introduction to Building Blocks Architecture Partitioning Content Framework and Meta Model Capability Based Planning Business Transformation Readiness Architecture Repository   TEST CERTIFICATION This course prepares candidates for the TOGAF® 9.2 Part 1 examination The exam (60 minutes) is in closed-book format, and includes 40 multiple-choice questions. The passing score is 55% (22 out of 40 questions) An examination voucher is provided as part of this course, delegates are required to self book at a time and location that is convenient to themselves.   HVORFOR VELGE SG PARTNER AS:  Flest kurs med Startgaranti Rimeligste kurs Beste service og personlig oppfølgning Tilgang til opptak etter endt kurs Partner med flere av verdens beste kursleverandører   [-]
Les mer
Oslo 2 dager 16 900 kr
11 Sep
11 Sep
11 Dec
UX Foundation [+]
UX Foundation [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Trusselbildet, styringssystemer, rammer for sikkerhetsarbeidet, sikkerhetsstandardene ISO27001 og 27002, gap-analyse, risikoanalyse, sikkerhetspolicy, ulike sikringstilta... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: IFUD1012 Internett og sikkerhet Innleveringer: Øvinger: 3 av 5 må være godkjent. Vurderingsform: Skriftlig eksamen, 3 timer (60 %). Det gjennomføres 3 obligatoriske større øvingsarbeider gruppevis underveis i kurset. Disse får en midlertidig vurdering/tilbakemelding og kan deretter leveres på nytt til en samlet sluttvurdering som teller 40 % på karakteren. Ansvarlig: Ole Christian Eidheim Eksamensdato: 12.12.13 / 26.05.14         Læremål: Etter å ha gjennomført emnet Informasjonssikkerhetsstyring skal studenten ha følgende samlede læringsutbytter: KUNNSKAPER:Kandidaten:- kan gjøre rede for hva informasjonssikkerhet betyr for en bedrifts økonomi og omdømme- kan gjøre rede for hva standardene ISO 27001 og ISO 27002 inneholder og hvordan de benyttes i sikkerhetsarbeidet- kjenner til prinsippene i Demmings sirkel og kunne redegjøre for betydningen av disse for det kontinuerlige sikkerhetsarbeidet- kjenner til en trinnvis plan for innføring av et styringssystem for informasjonssikkerhet (ISMS) og kunne redegjøre for de kritiske suksessfaktorene i hver av fasene- kan redegjøre for forutsetninger og tiltak for å skape en sikkerhetskultur i en bedrift- kan redegjøre for den trinnvise prosessen frem mot sertifisering av et ISMS eller produkt- kan redegjøre for rollen til målinger og evalueringer i sikkerhetsarbeidet FERDIGHETER:Kandidaten kan:- kartlegge trusselbildet for en konkret bedrift- gjennomføre en risikoanalyse for en bedrift på en strukturert og systematisk måte- innføre tiltak for å redusere risikoverdien for kartlagte trusler som har for høy risikoverdi- velge og utarbeide relevante sikkerhetspolicyer for en konkret bedrift- utarbeide forslag til en organisasjonsstruktur for sikkerhetsarbeidet i en konkret bedrift- analysere behovet for sertifisering av ISMS for en konkret bedrift og gi anbefalinger om veien dit GENERELL KOMPETANSE:Kandidaten kan:- kommunisere med og forstå brukernes behov- involvere de ansatte i endringsprosesser i bedriften og vite hvilke ressurser/kompetanse disse kan bidra med- involvere eksterne konsulenter i endringsprosesser i bedriften og vite hvilke ressurser/kompetanse disse kan bidra med Innhold:Trusselbildet, styringssystemer, rammer for sikkerhetsarbeidet, sikkerhetsstandardene ISO27001 og 27002, gap-analyse, risikoanalyse, sikkerhetspolicy, ulike sikringstiltak, sikkerhetskultur, sikkerhet i informasjonssystemer, veien til sertifisering, måling og evaluering, kontinuerlig forbedringLes mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Informasjonssikkerhetsstyring 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 4 dager 15 900 kr
Dette er et grunnleggende kurs i SQL-programmering. Kurset passer godt for deg som skal jobbe med relasjonelle databaser, som f.eks. Oracle, PostgreSQL, Microsoft SQL-ser... [+]
Dette er et grunnleggende kurs i SQL-programmering. Kurset passer godt for deg som skal jobbe med relasjonelle databaser, som f.eks. Oracle, PostgreSQL, Microsoft SQL-server eller MySQL/MariaDB.   Etter gjennomført kurs vil deltakerne være fortrolige med å opprette databaser og tabeller, sette inn data, endre og slette data og søke etter data i SQL-databaser.    Kursinnhold Introduksjon til relasjonsdatabaser og relasjonsmodellen: normalisering på tredje normalform. Introduksjon til MySQL, PostgreSQL, Oracle Express og tilhørende verktøy Introduksjon til SQL i Big Data (HiveQL, Cassandra QL, Phoenix HBase-klient) Søk i SQL-databaser, bl.a. med bruk av under-spørringer og inner og outer joins. Filtrering, gruppering og sortering av data. Oppretting, endring, kopiering og sletting av databaser og tabeller, Innsetting, oppdatering og sletting av data i tabeller Bruk av indekser og views. Skjema-design med bruk av ulike data-typer, tegnsett og lagringsformater. Introduksjon til MySQL, PostgreSQL og Oracle Express Bruk av bl.a. MySQL Workbench, PhPMyAdmin og Oracle Application Express. Kurset gjennomføres med en kombinasjon av online læringsmidler, gjennomgang av temaer og problemstillinger og praktiske øvelser med ulike typer datasett.    Kursinstruktør Terje Berg-Hansen Terje Berg-Hansen har bred erfaring fra prosjektledelse, utvikling og drift med små og store databaser, både SQL- og NoSQL-baserte. I tillegg til å undervise i etablerte teknologier leder han også Oslo Hadoop User Group, og er levende interessert i nye teknologier, distribuerte databaser og Big Data Science.      [-]
Les mer
1 dag 9 900 kr
Jira Service Management Essentials (Cloud) [+]
Jira Service Management Essentials (Cloud) [-]
Les mer
5 dager 20 000 kr
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [+]
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [-]
Les mer
4 dager 21 000 kr
This course teaches IT Professionals how to manage their Azure subscriptions, secure identities, administer the infrastructure, configure virtual networking, connect Azur... [+]
This course teaches IT Professionals how to manage their Azure subscriptions, secure identities, administer the infrastructure, configure virtual networking, connect Azure and on-premises sites, manage network traffic, implement storage solutions, create and scale virtual machines, implement web apps and containers, back up and share data, and monitor your solution.   TARGET AUDIENCE This course is for Azure Administrators. The Azure Administrator implements, manages, and monitors identity, governance, storage, compute, and virtual networks in a cloud environment. The Azure Administrator will provision, size, monitor, and adjust resources as appropriate. COURSE OBJECTIVES After completing this course you should be able to: Secure and manage identities with Azure Active Directory. Implement and manage users and groups. Implement and manage Azure subscriptions and accounts. Implement Azure Policy, including custom policies. Use RBAC to assign permissions. Leverage Azure Resource Manager to organize resources. Use the Azure Portal and Cloud Shell. Use Azure PowerShell and CLI. Use ARM Templates to deploy resources. Implement virtual networks and subnets. Configure public and private IP addressing. Configure network security groups. Configure Azure Firewall. Configure private and public DNS zones Configure VNet Peering. Configure VPN gateways. Choose the appropriate intersite connectivity solution. Configure network routing including custom routes and service endpoints. Configure an Azure Load Balancer. Configure and Azure Application Gateway. Choose the appropriate network traffic solution. Create Azure storage accounts. Configure blob containers. Secure Azure storage. Configure Azure files shares and file sync. Manage storage with tools such as Storage Explorer Plan for virtual machine implementations. Create virtual machines. Configure virtual machine availability, including scale sets. Use virtual machine extensions. Create an app service plan. Create a web app. Implement Azure Container Instances. Implement Azure Kubernetes Service. Backup and restore file and folders. Backup and restore virtual machines. Use Azure Monitor. Create Azure alerts. Query using Log Analytics. Use Network Watcher.   COURSE CONTENT   Module 1: Identity Azure Active Directory Users and Groups Lab : Manage Azure Active Directory Identities Module 2: Governance and Compliance Subscriptions and Accounts Azure Policy Role-based Access Control (RBAC) Lab : Manage Subscriptions and RBAC Lab : Manage Governance via Azure Policy Module 3: Azure Administration Azure Resource Manager Azure Portal and Cloud Shell Azure PowerShell and CLI ARM Templates Lab : Manage Azure resources by Using the Azure Portal Lab : Manage Azure resources by Using ARM Templates Lab : Manage Azure resources by Using Azure PowerShell Lab : Manage Azure resources by Using Azure CLI Module 4: Virtual Networking Virtual Networks IP Addressing Network Security groups Azure Firewall Azure DNS Lab : Implement Virtual Networking Module 5: Intersite Connectivity VNet Peering VPN Gateway Connections ExpressRoute and Virtual WAN Lab : Implement Intersite Connectivity Module 6: Network Traffic Management Network Routing and Endpoints Azure Load Balancer Azure Application Gateway Traffic Manager Lab : Implement Traffic Management Module 7: Azure Storage Storage Accounts Blob Storage Storage Security Azure Files and File Sync Managing Storage Lab : Manage Azure storage Module 8: Azure Virtual Machines Virtual Machine Planning Creating Virtual Machines Virtual Machine Availability Virtual Machine Extensions Lab : Manage virtual machines Module 9: Serverless Computing Azure App Service Plans Azure App Service Container Services Azure Kubernetes Service Lab : Implement Web Apps Lab : Implement Azure Container Instances Lab : Implement Azure Kubernetes Service Module 10: Data Protection File and Folder Backups Virtual Machine Backups Lab : Implement Data Protection Module 11: Monitoring Azure Monitor Azure Alerts Log Analytics Network Watcher Lab : Implement Monitoring     [-]
Les mer
5 dager 25 500 kr
MS-101: Microsoft 365 Mobility and Security [+]
MS-101: Microsoft 365 Mobility and Security [-]
Les mer