IT-kurs
Sør-Trøndelag
Du har valgt: Ranheim
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Ranheim ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Oslo Trondheim 2 dager 16 900 kr
22 Sep
22 Sep
20 Oct
Kubernetes [+]
Kubernetes [-]
Les mer
Nettkurs 6 timer 549 kr
Dette er første del av læringsstien «Frontend-utvikler» hvor vi skal lære deg alle ferdighetene du trenger for å lage raske og moderne nettsider. Vi går ut i fra at du ik... [+]
Start din reise som frontend-utvikler med kurset "HTML: Komplett" ledet av Espen Faugstad hos Utdannet.no. Dette kurset er første trinn i læringsstien «Frontend-utvikler», designet for å gi deg alle nødvendige ferdigheter for å bygge raske og moderne nettsider. Vi antar ingen tidligere kunnskap om HTML, CSS eller JavaScript, og du vil lære alt fra grunnleggende til avanserte teknikker. Kurset begynner med HTML, hjertet av webutvikling, og vil ta deg gjennom grunnleggende syntaks, tekstformatering, oppretting av lenker, håndtering av multimedia, og mye mer. Du vil også lære å strukturere nettsider effektivt, jobbe med tabeller og skjemaer, og til slutt lage et prosjekt som demonstrerer dine nye ferdigheter. Etter å ha fullført dette kurset, vil du være godt rustet til å fortsette med CSS og JavaScript for å skape vakre, responsive og lynraske nettsider som fungerer utmerket på alle enheter.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Internett Kapittel 3: Syntaks Kapittel 4: Tekst Kapittel 5: Link Kapittel 6: Multimedia Kapittel 7: Tabell Kapittel 8: Skjema Kapittel 9: Struktur Kapittel 10: Prosjekt Kapittel 11: Avslutning   Varighet: 5 timer og 55 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo 4 dager 22 500 kr
01 Sep
01 Sep
03 Nov
DP-300: Administering Microsoft Azure SQL Solutions [+]
DP-300: Administering Microsoft Azure SQL Solutions [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu er en komplett PDF-løsning, som lar deg opprette og redigere PDF-dokumenter og tegninger. Videre kan du markere opp og gjøre mengdeuttak fra tegningene, sam... [+]
På dette online-kurset vil du lære: Publisering, redigering, kommentering og markering Sikkerhet, digitale stempler og digital signatur Opprette og lagre symboler og tilpassede markeringsverktøy i Tool Chest Skybasert samarbeid og deling av dokumenter i Bluebeam Studio eXtreme-funksjoner (OCR – Tekstfjerning - Skjema-opprettelse - Batch Link) Noen eXtreme-funksjoner blir vist/nevnt i kurset [-]
Les mer
Oslo 5 dager 27 900 kr
20 Oct
20 Oct
GDPR - Certified Data Protection Officer [+]
GDPR - Certified Data Protection Officer [-]
Les mer
Nettkurs 6 timer 549 kr
I dette kurset lærer du å bruke Adobe Premiere Pro på et profesjonelt nivå – og det kreves ingen forkunnskaper for å ta kurset. I begynnelsen av kurset lærer du å opprett... [+]
Bli en mester i videoredigering med Adobe Premiere Pro gjennom dette dyptgående kurset ledet av Espen Faugstad, en erfaren kursholder hos Utdannet.no. Dette kurset krever ingen forkunnskaper og tar deg med fra grunnleggende til avanserte teknikker i Premiere Pro. Det er ideelt for alle som ønsker å lære profesjonell videoredigering, enten for personlig bruk eller for å utvikle karrieren som klipper. Kurset dekker alt fra opprettelse av prosjekter, organisering av filer, redigering av video og lyd, til bruk av effekter, overganger, og fargekorrigering. Du vil også lære å opprette titler, teksting, og bruke animasjon for å gi dine videoer et profesjonelt uttrykk. Ved kursets slutt vil du ha opparbeidet deg all den kunnskapen som trengs for å jobbe som en profesjonell videoredigerer.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Prosjekter Kapittel 3: Importere filer Kapittel 4: Redigere video Kapittel 5: Teknikker Kapittel 6: Redigere lyd Kapittel 7: Effekter og overganger Kapittel 8: Titler, grafikk og teksting Kapittel 9: Animere Kapittel 10: Fargekorrigere Kapittel 11: Eksportere Kapittel 12: Avslutning   Varighet: 6 timer og 5 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo 2 dager 16 900 kr
25 Sep
25 Sep
18 Dec
htWeb Security for Developers [+]
httpWeb Security for Developers [-]
Les mer
1 dag 5 990 kr
På dette kurset går man igjennom alle Excels gode analysemuligheter, ikke minst Pivottabellen og Power Pivot. [+]
Excel Pivot kurs for deg som ønsker god oversikt over store datamengder. Gjennomgang av viktigheten av et korrekt grunnlag, for å kunne benytte de gode analysemulighetene som ligger i Excel. Det blir vist hvordan pivot kan brukes på forskjellige måter, og hvordan dette kan gjøres med dynamiske områder. Det vil også være rom for å demonstrere enkelte funksjoner som kan gjøre rapportering i Pivot bedre. Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Utgangspunktet: listen Få de beste rådene angående listen du skal bruke.   Utgangspunktet: tabellen Se fordeler ved å bruke dynamisk tabell vs. statisk liste.   Pivottabell - begrepsavklaringer Hva er en Pivottabell: Forklaring gis på ord og uttrykk relevant for pivottabellen. Grunnlaget: Grunnlaget, tabellen, bør være bygd opp på en spesiell måte, vi forklarer hvordan. Konsolidering: Vi viser hvordan grunnlaget kan være ulike krysstabeller som sys sammen til en pivottabell. Power Pivot Separate pivotminner: Hvorfor bruke dette?   Oppdatere pivottabell Endring i datakilden: Oppdatering av pivottabellen er viktig å kjenne til. Utvidelse av datakilden: Hva skjer dersom listen utvides enten i bredden eller i høyden. Dynamisk navngiving er en effektiv løsning. En annen metode er å opprette pivottabellen på basis av en liste som er definert som en tabell. Datakilder: Lær hvordan du kan ha flere ulike kilder som basis for pivottabellen, og hvordan disse skal oppdateres ved behov.   Pivottabellutseende Endring av oppsett: Lær hvor enkelt det er å endre oppsette for pivottabellen. Autooppsett: Excel 2010 har mange ulike autoformat. Formatering: I tillegg til formatet på selve pivottabellen, gjennomgår vi også celleformateringen. Sortering: Sorter gjerne tall og eller tekst Filter: Se forskjell på den tradisjonelle måten å filtrere på eller slicer. Skjule/vise: Sentralt når du ønsker å fokusere på deler av en rapport. Gruppering: Tekst, tall eller datoer kan fint grupperes. Nyttig! Vise / skjule delsummer: Praktisk å kjenne til hvordan du aktiverer / deaktiverer delsummer   Beregninger i pivottabell Bestemme ulike sammendrag: I en pivottabell kan du utføre ulike sammendrag. Egendefinert beregninger: Lær hvordan du kan lage nye beregnende felt på basis av eksisterende felt i en pivottabell. Vise data på ulike måter: Feltene kan vises blant annet som prosenter av andre felt, eller tallavvik av andre felt.   Anvendelse av pivottabellen Hent data: vi viser deg ulike metoder for å hente data fra en pivottabell, for bruk i ”vanlige” celler i Excel. Diagram: Lær hvordan du kan lage ulike diagrammer basert på data i pivottabellen   Power Pivot Import av PowerPivot data: Du kan hente data til PowerPivot vindu på ulike måter og fra ulike kilder. Koble data: Lær å opprette relasjoner mellom tabeller Rapporter: Bygg opp pivotrapporter fra relaterte grunnlag Beregninger: Introduksjon til DAX språket 4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti     [-]
Les mer
Nettkurs 9 timer 549 kr
Ta vårt videokurs i Lightroom CC fra din datamaskin. Lær så mye du vil, når du vil. Du får gratis hjelp. Du får kursbevis. Du får tilgang til alle kurs. Meld deg på her! [+]
Lightroom CC er et råflott bilderedigeringsverktøy for fotoentusiaster. Lightroom CC inneholder alt du trenger for å organisere, redigere, lagre og dele bildene dine på tvers av enheter - dette være seg datamaskin, nettbrett eller mobil. Det betyr at du kan redigere et bilde på datamaskinen og fortsette på mobilen. Bildene synkroniseres nemlig i skyen. I dette kurset kommer Espen Faugstad til å guide deg gjennom programmet fra A til Å. Du kommer til å lære å importere og organisere, redigere ved hjelp av enkle og avanserte verktøy, og eksportere og dele. Du kommer også til å lære hvordan den skybaserte lagringsplassen kommer til å påvirke, og ikke minst, forbedre din digitale arbeidsflyt.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Importere Kapittel 3: Organisere Kapittel 4: Redigere (enkel) Kapittel 5: Beskjære Kapittel 6: Redigere (avansert) Kapittel 7: Eksportere Kapittel 8: Avslutning   Varighet: 2 timer og 16 minutter.   Hørt om Netflix? Vi er som dem, bare at vi lager nettkurs. Utdannet.no AS er en norsk startup som utvikler nettkurs i datateknologi, kreative fagfelt og grunnleggende forretningsferdigheter. Med støtte fra Innovasjon Norge og Forskningsrådet utvikler vi nestegenerasjons kursplattform, med mål om å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle. Med over 1 million videovisninger, 20.000 registrerte medlemmer og en gjennomsnittlig årlig vekst på 45 % er vi godt i gang med å befeste vår posisjon i det norske markedet. Vi har kunder fra bedrifter som: Adresseavisen, Coca-Cola, Helsedirektoratet, IKEA, Joblearn, NAV, Nordea, NorgesGruppen, NRK, Oslo kommune, Securitas, Telenor og Utdanningsforbundet.   [-]
Les mer
1 dag 9 900 kr
Jira Project Administration (Cloud) [+]
Jira Project Administration (Cloud) [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 5 dager 46 000 kr
21 Jul
08 Sep
10 Nov
https://www.glasspaper.no/kurs/sise-implementing-and-configuring-cisco-identity-services-engine/ [+]
SISE: Implementing and Configuring Cisco Identity Services Engine [-]
Les mer