IT-kurs
Troms
Du har valgt: Sørreisa kommune
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Sørreisa kommune ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 365 dager 2 995 kr
Excelkurs Basis - elæringskurs [+]
Excelkurs Basis - elæringskurs [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
Successful completion of this five-day, instructor-led course should enhance the student’s understanding of configuring and managing Palo Alto Networks Next-Generation Fi... [+]
COURSE OVERVIEW The course includes hands-on experience configuring, managing, and monitoring a firewall in a lab environment TARGET AUDIENCE This course is aimed at Security Engineers, Security Administrators, Security Operations Specialists, Security Analysts, and Support Staff. COURSE OBJECTIVES After you complete this course, you will be able to: Configure and manage the essential features of Palo Alto Networks next-generation firewalls Configure and manage Security and NAT policies to enable approved traffic to and from zones Configure and manage Threat Prevention strategies to block traffic from known and unknown IP addresses, domains, and URLs Monitor network traffic using the interactive web interface and firewall reports COURSE CONTENT 1 - Palo Alto Networks Portfolio and Architecture 2 - Configuring Initial Firewall Settings 3 - Managing Firewall Configurations 4 - Managing Firewall Administrator Accounts 5 - Connecting the Firewall to Production Networks with Security Zones 6 - Creating and Managing Security Policy Rules 7 - Creating and Managing NAT Policy Rules 8 - Controlling Application Usage with App-ID 9 - Blocking Known Threats Using Security Profiles 10 - Blocking Inappropriate Web Traffic with URL Filtering 11 - Blocking Unknown Threats with Wildfire 12 - Controlling Access to Network Resources with User-ID 13 - Using Decryption to Block Threats in Encrypted Traffic 14 - Locating Valuable Information Using Logs and Reports 15 - What's Next in Your Training and Certification Journey Supplemental Materials Securing Endpoints with GlobalProtect Providing Firewall Redundancy with High Availability Connecting Remotes Sites using VPNs Blocking Common Attacks Using Zone Protection   FURTHER INFORMATION Level: Introductory Duration: 5 days Format: Lecture and hands-on labs Platform support: Palo Alto Networks next-generation firewalls running PAN-OS® operating system version 11.0     [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
5 dager 25 500 kr
MD-101: Managing Modern Desktops [+]
MD-101: Managing Modern Desktops [-]
Les mer
Nettkurs 3 timer 549 kr
God formatering handler ikke bare om å få et regneark til å se pent ut, det handler like mye om å kommunisere effektivt. Et dårlig formatert regneark vil gjøre det vanske... [+]
God formatering i Microsoft Excel handler ikke bare om å få et regneark til å se pent ut; det handler like mye om å kommunisere effektivt. Et dårlig formatert regneark kan gjøre det vanskelig å lese og forstå innholdet. Derimot vil et godt formatert regneark gjøre det enklere å absorbere informasjonen som presenteres. Dette kurset, ledet av Espen Faugstad, vil gi deg ferdighetene du trenger for å formatere data i Microsoft Excel på avansert nivå. Du vil lære hvordan du gjør regnearket mer leselig, forståelig og effektivt. Emner inkluderer formatering av tekstverdier og tallverdier, opprettelse av egendefinerte formateringsregler, tilpasning av rader, kolonner og celler, formatering av tabeller, diagrammer og bilder, og mye mer. Kurset er delt inn i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Skrift Kapittel 3: Justering Kapittel 4: Tall Kapittel 5: Stiler Kapittel 6: Celler Kapittel 7: Tabell Kapittel 8: Diagrammer Kapittel 9: Bilder Kapittel 10: Avslutning Etter å ha fullført kurset, vil du kunne bruke avansert formatering i Excel for å forbedre presentasjonen og lesbarheten av dine regneark, noe som er uvurderlig for effektiv kommunikasjon og dataanalyse.   Varighet: 2 timer og 27 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo 5 dager 46 000 kr
08 Sep
10 Nov
10 Nov
https://www.glasspaper.no/kurs/sise-implementing-and-configuring-cisco-identity-services-engine/ [+]
SISE: Implementing and Configuring Cisco Identity Services Engine [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, L... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende objektorientert programmering i for eksempel Java eller C++ Innleveringer: Øvinger: 8 av 11 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 4 timer. Case-beskrivelser etc. legges ut i ItsLearning 24 timer før. (NB! Eksamensform kan bli endret under forutsetning av at ny teknologi gjør det mulig å arrangere eksamen elektronisk.) Ansvarlig: Grethe Sandstrak Eksamensdato: 05.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal kandidaten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan gjøre rede for sentrale begreper innen objektorientering- kan konstruere et objektorientert C#. NET-program ut fra en gitt problemstilling- kan finne fram, sette seg inn i og anvende dokumentasjon om .NET Framework library- kjenner til ulike GUI-komponenter og hvordan de brukes i C#-programmer FERDIGHETER:Kandidaten kan:- sette opp programmiljø for å utvikle og kjøre C#. NET applikasjoner på egen pc- kan anvende klasser fra .NET Framework library- lage C#.NET program* med fordeling av oppgaver mellom objekter og der arv og polymorfi benyttes* med grafiske brukergrensesnitt* som kommuniserer med en database via SQL* med LINQ, delegater, templates GENERELL KOMPETANSEKandidaten kan:- kommunisere om objektorientert programmering og databaser med relevant begrepsapparat Innhold:NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, LINQ, Templates, Collections.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag C#.NET 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Excel for controllere [+]
Dette kurset er innrettet mot dem som jobber med økonomisk oppfølging i bedriften. Vi går inn på prosessene fra innhenting av data, bearbeidelse av dataene, sammendrag og analyse av dataene, og til sist rapportering av dataene til bedriftens beslutningstagere. Vi bruker en god del tid på Pivot og Power Pivot her, men vi går ikke fullt så langt som i spesialkurset om Pivottabeller. Kurset forutsetter at man er godt kjent i Excel, og vant til å jobbe med litt kompliserte problemstillinger i Excel. Kontroll/gjennomgang av en del sentral funksjonalitet – bl.a. absolutte, relative og blandede referanser. Sammendrag av data fra flere ark i samme eller flere arbeidsbøker, bl.a. gjennomgående summering og tabulering v.hj.a. INDIREKTE-funksjonen. Betingende sammendrag v.hj.a. matriseformler og funksjoner Sentrale funksjoner, bl.a. HVIS, HVISFEIL, FINN.RAD, FINN.KOLONNE, ANTALL.HVIS, etc. Sammendrag av data med Pivottabell Power Pivot Formler Rapportering av data Statiske rapporter Rapporter med interaktivitet, forskjellige teknikker Visualisering av tallene Dashboard Aktuelle teknikker for å lage dashboards Avstemming av to eller flere lister mot hverandre, f.ex. bank Lister – verktøy i Excel som er aktuelle når vi jobber med lister Makroer/VBA – introduksjon til automatisering [-]
Les mer
Nettkurs 2 timer 1 990 kr
Filer i SharePoint lagres i bibliotek. Her tar vi en grundig gjennomgang av bibliotek og tilpasningsmuligheter for disse, som versjonering, maler og Office-integrasjon. [+]
Filer i SharePoint lagres i bibliotek. Her tar vi en grundig gjennomgang av bibliotek og tilpasningsmuligheter for disse, som versjonering, maler og Office-integrasjon. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Om bibliotek Møt biblioteksmalene i SharePoint Opplasting, nedlasting Office-programmene og bibliotek Områdepapirkurv   Tilpasse bibliotek Endre Office-mal for et bibliotek Tilpass kolonner og metadata   Tips til bibliotek Bruke kolonner i Word Bibliotek i Windows Utforsker   Utvidet om bibliotek Gjennomgang av versjonering Bli kjent med godkjenning Arkivering og Send til   Veien videre Introduksjon til innholdstyper Introduksjon til dokumentsenter og innholds-sortering 3 gode grunner til å delta 1. Møt SharePoint sine bibliotek-apper og lær måter å åpne og lagre i bibliotek og håndtere innholdet 2. Forstå mer om versjonering, godkjenning og arkivering 3. Bli kjent med dokumentsenter og innholds-sortering   [-]
Les mer
Oslo 5 dager 46 000 kr
13 Oct
13 Oct
SFWIPA: Securing Data Center Networks and VPNs with Cisco Firewall Threat Defense [+]
SFWIPA: Securing Data Center Networks and VPNs with Cisco Secure Firewall Threat Defense [-]
Les mer
Klasserom + nettkurs 5 dager 31 000 kr
Expand your Citrix networking knowledge and skills by enrolling in this five-day course. It covers Citrix ADC essentials, including secure load balancing, high availabili... [+]
COURSE OVERVIEW  You will learn to deliver secure remote access to apps and desktops integrating Citrix Virtual Apps and Citrix Desktops with Citrix Gateway.  This course includes an exam. TARGET AUDIENCE Built for IT Professionals working with Citrix ADC and Gateway, with little or no previous Citrix networking experience. Potential students include administrators, engineers, and architects interested in learning how to deploy or manage Citrix ADC or Citrix Gateway environments. COURSE OBJECTIVES  Identify the functionality and capabilities of Citrix ADC and Citrix Gateway Explain basic Citrix ADC and Gateway network architecture Identify the steps and components to secure Citrix ADC Configure Authentication, Authorization, and Auditing Integrate Citrix Gateway with Citrix Virtual Apps, Citrix Virtual Desktops and other Citrix components COURSE CONTENT Module 1: Getting Started Introduction to Citrix ADC Feature and Platform Overview Deployment Options Architectural Overview Setup and Management Module 2: Basic Networking Networking Topology Citrix ADC Components Routing Access Control Lists Module 3: ADC Platforms Citrix ADC MPX Citrix ADC VPX Citrix ADC CPX Citrix ADC SDX Citrix ADC BLX Module 4: High Availability Citrix ADC High Availability High Availability Configuration Managing High Availability In Service Software Upgrade Troubleshooting High Availability Module 5: Load balancing Load Balancing Overview Load Balancing Methods and Monitors Load Balancing Traffic Types Load Balancing Protection Priority Load Balancing Load Balancing Troubleshooting Module 6: SSL Offloading SSL Overview SSL Configuration SSL Offload Troubleshooting SSL Offload SSL Vulnerabilities and Protections Module 7: Security Authentication, Authorization, and Auditing Configuring External Authentication Admin Partitions Module 8: Monitoring and Troubleshooting Citrix ADC Logging Monitoring with SNMP Reporting and Diagnostics AppFlow Functions Citrix Application Delivery Management Troubleshooting Module 9: Citrix Gateway Introduction to Citrix Gateway Advantages and Utilities of Citrix Gateway Citrix Gateway Configuration Common Deployments Module 10: AppExpert Expressions Introduction to AppExpert Policies Default Policies Explore Citrix ADC Gateway Policies Policy Bind Points Using AppExpert with Citrix Gateway Module 11: Authentication, Authorization, and Secure Web Gateway Authentication and Authorization Multi-Factor Authentication nFactor Visualizer SAML authentication Module 12: Managing Client Connections Introduction to Client Connections Session Policies and Profiles Pre and Post Authentication Policies Citrix Gateway Deployment Options Managing User Sessions Module 13: Integration for Citrix Virtual Apps and Desktops Virtual Apps and Desktop Integration Citrix Gateway Integration Citrix Gateway WebFront ICA Proxy Clientless Access and Workspace App Access Fallback SmartControl and SmartAccess for ICA Module 14: Configuring Citrix Gateway Working with Apps on Citrix Gateway RDP Proxy Portal Themes and EULA [-]
Les mer
Oslo Bergen Og 1 annet sted 2 dager 20 900 kr
18 Aug
25 Aug
25 Aug
TOGAF® EA Training Foundation [+]
TOGAF® EA Training Foundation [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Innføring i datamodellering med EER og UML-notasjon. Design av relasjonsdatabase inkl. bruk av nøkler, referanseintegritet og enkel normalisering. Databasedefinisjon (DDL... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: IT Introduksjon eller tilsvarende. Innleveringer: Øvinger: 8 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 3 timer Ansvarlig: Tore Mallaug Eksamensdato: 09.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten skal:- kjenne sentrale begreper innen databaser og datamodellering, og kan gjøre rede for disse- forstå hvordan en relasjonsdatabase er bygd opp ved å se på relasjonene (tabellene) og tilhørende nøkler- forstå (tolke) et (E)ER-diagram modellert i fagets gjeldende notasjon, og vite hvordan dette kan oversettes til relasjonsmodellen- gjøre rede for hvordan databaser kan fungere i en klient/tjener-arkitektur. FERDIGHETER:Kandidaten skal kunne:- tegne sitt eget (E)ER-diagram for å oppnå en god databasestruktur- lage sin egen normaliserte relasjonsdatabase med nøkler og referanseintegritet, og opprette databasen i et valgt databaseverktøy (databasesystem)- utføre SQL-spørringer mot en gitt database- lage en relasjonsdatabase som støtter opp om funksjonaliteten til et gitt grafisk brukergrensesnitt GENERELL KOMPETANSEKandidaten- viser en bevisst holdning til strukturell lagring og representasjon av data i et informasjonssystem- viser en bevisst holdning til databasedesign for å unngå unødvendig dobbeltlagring av data i en database Innhold:Innføring i datamodellering med EER og UML-notasjon. Design av relasjonsdatabase inkl. bruk av nøkler, referanseintegritet og enkel normalisering. Databasedefinisjon (DDL) og datamanipulering (DML) i SQL. Bruk av et valgt databaseverktøy (MySQL), se sammenhengen mellom datamodell, databaseverktøy og applikasjon / web-grensesnitt (klient/tjener -arkitektur).Les mer om faget herDemo: Her er en introduksjonsvideo for faget Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Databaser 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.  [-]
Les mer
Bedriftsintern 1 dag 7 500 kr
Data science og maskinlæring er blitt en viktig drivkraft bak mange forretnings beslutninger. Men fortsatt er mange usikre på hva begrepene innebærer og hvilke muligheter... [+]
Dette kurset tilbys som bedriftsinternt kurs   Maskinlæring handler om sette datamaskiner i stand til å lære fra og utvikle atferd basert på data. Det vil si at en datamaskin kan løse en oppgave den ikke er eksplisitt programmert for å håndtere. I stedet er den i stand til å automatisk lære gjenkjenning av komplekse mønstre i data og gjøre beslutninger basert på dette disse. Maskinlæring gir store muligheter, men mange bedrifter har problemer med å ta teknologien i bruk. Nøyaktig hvilke oppgaver kan maskinlæring utføre, og hvordan kommer man i gang? Dette kurset gir oversikt over mulighetene som ligger i maskinlæring, og hvordan i tillegg til kunnskap om hvordan teknologien kan løse oppgaver og skape resultater i praksis. Hva er maskinlæring, datavitenskap og kunstig intelligens og hvordan det er relatert til statistikk og dataanalyse? Hvordan å utvinne kunnskap fra dataene dine? Hva betyr Big data og hvordan analyseres det? Hvor og hvordan skal du bruke maskinlæring til dine daglige forretningsproblemer? Hvordan bruke datamønstre til å ta avgjørelser og spådommer med eksempler fra den virkelige verden? Hvilke typer forretningsproblemer kan en maskinen lære å håndtere Muligheter som maskinlæring gir din bedrift Hva er de teoretiske aspekter på metoder innen maskinlæring? Hvilke ML-metoder som er relevante for ulike problemstillinger innen dataanalyse? Hvordan evaluere styrker og svakheter mellom disse algoritmene og velge den beste? Anvendt data science og konkrete kunde eksempler i praksis   Målsetning Kurset gir kunnskap om hvordan maskinlæring kan løse et bestemt problem og hvilke metoder som egner seg i en gitt situasjon. Du blir i stand til å kan skaffe deg innsikt i data, og vil kunne identifisere egenskapene som representerer dem best. Du kjenner de viktigste maskinlæringsalgoritmene og hvilke metoder som evaluerer ytelsen deres best. Dette gir grunnlag for kontinuerlig forbedring av løsninger basert på maskinlæring.   [-]
Les mer