IT-kurs
Akershus
Du har valgt: Skedsmo
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Skedsmo ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu er en komplett PDF-løsning, som lar deg opprette og redigere PDF-dokumenter og tegninger. Videre kan du markere opp og gjøre mengdeuttak fra tegningene, sam... [+]
Sammenligne tegninger, også i batch Hvordan standardisere designgjennomgangen? Opprette tilpassede markeringsverktøy i Tool Chest Bruk av Markeringslisten for sporing, kommentering og status på markeringer Samhandling i sanntid mellom forskjellige aktører under designgjennomgangen i Studio Sessions [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 3 dager 20 900 kr
08 Oct
08 Oct
17 Dec
Python Data Science [+]
Python Data Science [-]
Les mer
Oslo 2 dager 16 900 kr
25 Sep
25 Sep
18 Dec
htWeb Security for Developers [+]
httpWeb Security for Developers [-]
Les mer
Nettkurs 2 timer 1 990 kr
Instruktørbasert opplæring: Delta på webinar å lær hvordan man bygger en prosjektplan for å få god kontroll med gjennomføringen! [+]
Delta på webinar å lær hvordan man bygger en prosjektplan for å få god kontroll med gjennomføringen! Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Tabeller og felt i Project Forskjellige typer felt. Forskjeller mellom felt i aktiviteter og ressurser Legge til og fjerne felt Opprette og tilpasse felt Endre eksisterende tabeller Opprette nye tabeller   Forskjellige visninger Sortering Filtrering - Innebygde filetere. Definere nye filtre Gruppering. Benytte grupper til bedre oversikt og kontroll   3 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Gratis support   [-]
Les mer
Virtuelt klasserom 2 dager 13 500 kr
Dette er et 2-dagers påbyggingskurs i SQL-programmering. Målsettingen er at etter gjennomført kurs vil deltakerne være fortrolige med mer avanserte søk etter data i SQL-d... [+]
Dette er et 2-dagers påbyggingskurs i SQL-programmering. Målsettingen er at etter gjennomført kurs vil deltakerne være fortrolige med mer avanserte søk etter data i SQL-databaser, oppretting av egne funksjoner og eksportering av data i ulike formater, som XML- og JSON.   Innhold Vi bruker Oracle, PostgreSQL og Microsoft SQL-server i kurset og belyser forskjellene mellom disse i håndteringen av avanserte SQL-setninger.   Agenda Gruppering med delsummer ved bruk av Rollup og Cube. Betingelseslogikk i søk med CASE ... WHEN ... THEN ... ELSE Oppretting av egne funksjoner med SQL Oppretting og bruk av Materialized Views Bruk av Common Table Expressions (CTE) Bruk av komplekse felt og sammensatte datatyper (arrays, egne datatyper etc.) - opprette komplekse felt, sette inn data og søke etter data i komplekse felt. Eksportere data som JSON / XML Bruk av Vindusfunksjoner til bl.a. å regne ut kumulative summer, rangeringer mm. Krysstabuleringer med PIVOT-funksjoner Bruk av SELF JOINS Behandling av geografiske data med SQL   Gjennomføring Kurset gjennomføres med en kombinasjon av online læringsmidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvingsoppgaver til hvert av hovedtemaene som gjennomgås.   Kursinstruktør: Terje Berg-Hansen har bred erfaring fra prosjektledelse, utvikling og drift med små og store databaser, både SQL- og NoSQL-baserte. I tillegg til å undervise i etablerte og nye teknologier jobber han med programmering, webutvikling og administrasjon av Linux-servere. Han er levende interessert i nye teknologier, distribuerte databaser og Data Science.   [-]
Les mer
Oslo 5 dager 26 900 kr
08 Sep
08 Sep
01 Dec
Modern C++20 Development [+]
Modern C++20 Development [-]
Les mer
Virtuelt eller personlig 2 dager 9 900 kr
Få forståelse av oppbygning av definerte mekaniske konstruksjoner med Inventors avanserte designverktøy som f.eks. rammegenerator. [+]
Fleksible kurs for fremtiden Ny kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Best practice i Part og Assemblie, tips og triks Ulike metoder på Skjellett-modellering. (Derived VS Multibody) Hvordan bruke Parametere Frame generator Flere Assemblie-features, Design View/ Level of Detail En kjapp innføring i iLogic Kurset vil også i en viss grad bli styrt ut ifra deltagernes spørsmål og ønsker   Her er et utvalg av temaene du vil lære på kurset: Intelligente konstruksjoner Sammenstillingsfunksjoner Konstruksjonsverktøyer Etter endt kurs vil du ha kunnskap og forståelse for oppbygning av definerte mekaniske konstruksjoner med Inventors avanserte designverktøy som f.eks. rammegenerator.Dessuten oppnår du en grundig kunnskap om håndtering og oppbygning av skjelettmodeller med bruk av ”Multi Bodies”.Du lærer å utnytte funksjoner som kan effektivisere håndteringen av samlinger.   Tilpassete kurs for bedrifter Vi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Oslo 1 dag 9 500 kr
18 Aug
26 Sep
07 Nov
Develop dynamic reports with Microsoft Power BI [+]
Develop dynamic reports with Microsoft Power BI [-]
Les mer
1 dag 9 500 kr
AZ-1001: Deploy and manage containers using Azure Kubernetes Service [+]
AZ-1001: Deploy and manage containers using Azure Kubernetes Service [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Deltakerne lærer å håndtere lister på en rask og effektiv måte og vi ser også på noen av fordelene ved å gjøre en liste om til en tabell og når en ikke bør gjøre det. Ved... [+]
Kursinnhold Flash Fill Diagrammer Sparkline grafikk Hurtiganalyse Sortering og filtrering Avansert filter Delsammendrag Tabeller Målgruppe Deg som Jobber med lister i Excel Ønsker å effektivisere databehandlingen i Excel Vil ha en kjapp gjennomgang av disse elementene. Har grunnleggende kunnskaper i Excel og ønsker å lære mer. Forkunnskaper Har laget regneark Har kunnskaper tilsvarende «Ta kontroll over regnearket» Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to systematically observe services and service components, recording, reporting, and responding to selected changes of state identified as events. [+]
Understand the purpose and key concepts of Monitoring and Event Management, highlighting its importance in proactively managing IT services and detecting events to ensure operational stability.   This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer