IT-kurs
Du har valgt: Slätta-Korsarvet
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Slätta-Korsarvet ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
Nettkurs 2 timer 1 990 kr
Forsiden på området er det første brukerne møter. På dette webinaret lærer du hvordan man kan løfte frem SharePoint-innhold på forsiden via forsideredigering, sam... [+]
Forsiden på området er det første brukerne møter. På dette webinaret lærer du hvordan man kan løfte frem SharePoint-innhold på forsiden via forsideredigering, samt hvordan man lager gode område-forsider generelt. Webinaret varer i 2 timer og består av to økter à 45 min. Etter hver økt er det 10 min spørsmålsrunde. Mellom øktene er det 10 min pause. Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Forstå SharePoint håndtering av forsider Wiki bibliotek Legge til flere sider Versjonering Områdets startside   Bli kjent med formateringsvalg Generelle sideoppsett Tabeller for å styre layout   Håndtere bilder og grafikk Områdeinnhold   Tilpass webdeler for å løfte frem innhold fra forskjellige kilder Sette inn app-del App-/webdel-spesifike visninger Webdel-side   Eksempler på anvendelse av webdeler Appdel for bibliotek basert på visning Medlemmer Presentere person   [-]
Les mer
Oslo 5 dager 27 900 kr
20 Oct
20 Oct
GDPR - Certified Data Protection Officer [+]
GDPR - Certified Data Protection Officer [-]
Les mer
Virtuelt klasserom 3 dager 17 500 kr
3-dagers virtuellt instruktør-ledet kurs som fører frem til ITIL Foundation sertifisering. [+]
Sopra Steria Akademiet er en del av Sopra Steria, og tilbyr kurs og opplæring innen: IT Service Management Prosjekt- og programstyring It-styring og kontroll Våre instruktører jobber til daglig som rådgivere innen disse områdene i Sopra Steria.  ITIL® 4 er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. ITIL® 4 Foundation-sertifiseringen er designet som en introduksjon til ITIL® 4 og gjør det mulig for kandidater å se på IT-tjenestestyring gjennom en ende-til-ende-driftsmodell for oppretting, levering og kontinuerlig forbedring av teknisk aktiverte produkter og tjenester.Kurset avsluttes med en sertifiseringstest som gjennomføres etter at kurset er fullført. Sertifiseringen gjøres via en online-basert tjeneste via vår partner PeopleCert. Man velger selv tidspunkt for sertifiseringen. Kurset inkluderer: Kursdokumentasjon, sertifiseringstest og lunsj ved fysisk oppmøte   Kurset varer i 3 dager. Dag 1 og 2: 09:00-16:00. Dag 3: 09:00-13:00 Vi stiller med erfarne norske instruktører. Kursmateriell og eksamen er på engelsk. Eksamen varer i 75 minutter.  Det bør beregnes 6 timer til selvstudium. Du kan lese mere om ITIL her ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Virtuelt eller personlig 4 dager 12 400 kr
08 Sep
13 Oct
11 Nov
Kurset vil gi en grundig gjennomgang av hovedkommandoene i Inventor. Deltagerne vil også få nødvendig forståelse for prinsipper og arbeidsmetoder i programmet. [+]
Etter gjennomført kurs skal kursdeltagerne bla. kunne bruke Inventor til å:• Lage modeller• Generere tegninger ut i fra modell• Lage sammenstillinger• Utføre de vanligste tegne- og editeringsfunksjoner• Målsette og påføre tekstKursinnhold:• Grunnleggende begrep og arbeidsmetoder • Parametrisk part-modellering• Arbeide med skisser• Features• Arbeide med sammenstillinger• 2D-layout - oppsett og innstillinger• Generere 2D-tegninger fra modell• Målsetting og innsetting av stykklister [-]
Les mer
Oslo 3 dager 20 900 kr
12 Nov
12 Nov
Progressive Web Apps and JavaScript [+]
Progressive Web Apps and JavaScript [-]
Les mer
Oslo 2 dager 16 900 kr
18 Sep
18 Sep
04 Dec
SAFe® 6.0 Scrum Master [+]
SAFe® Scrum Master Certification [-]
Les mer
2 dager 14 900 kr
ISO/IEC 27701 Foundation [+]
ISO/IEC 27701 Foundation [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 2 dager 16 900 kr
04 Sep
04 Sep
20 Nov
SAFe® 6.0 DevOps [+]
SAFe® DevOps Certification [-]
Les mer
Oslo 2 dager 16 900 kr
11 Sep
11 Sep
11 Dec
UX Foundation [+]
UX Foundation [-]
Les mer
Oslo 2 dager 16 900 kr
11 Sep
11 Sep
08 Dec
SAFe® 6.0 for Teams [+]
SAFe® for Teams Certification [-]
Les mer