IT-kurs
Nord-Trøndelag
Du har valgt: Steinkjer
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Steinkjer ) i IT-kurs
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettkurs 12 måneder 11 500 kr
ITIL® er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. [+]
ITIL® 4 Foundation-kurset er en introduksjon til ITIL® 4. Kurset lar kandidater se på IT-tjenestestyring gjennom en ende-til-ende driftsmodell, som inkluderer oppretting, levering og kontinuerlig forbedring av IT-relaterte produkter og tjenester. E-læringskurset inneholder 12 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Foundation e-læring (engelsk) i 12 måneder. ITIL® Foundation online voucher til sertifiseringstest + digital ITIL Foundation bok Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. Sertifiseringen består av: 40 spørsmål Multiple Choice 60 minutter + 15 minutter til rådighet dersom du ikke har engelsk som morsmål For å bestå må du ha minimum 26 riktige (65%) Ingen hjelpemidler tillatt ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu - Måling og mengdeberegning [+]
I kurset ”Måling og mengdebereging” vil du lære hvordan Revu brukes til å kalibrere og måle på PDF-tegninger, samt hvordan du kan opprette, spare og dele tilpassede markeringsverktøy. Disse kan så brukes til effektiv beregning av mengder og priser på alt fra vegg- og gulvarealer, til prising av utstyr på en riggplan. Å lære å bruke Revu til måling og mengdeberegning vil bl.a. gi følgende fordeler: Stor tidsbesparelse Større nøyaktighet og mindre feil Bedre dokumentasjon av mengdeberegningen Oppnå optimal utnyttelse av Bluebeam Revu i prosjektene [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
This three-day instructor-led class introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud, with a focus ... [+]
Through a combination of presentations, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems, and application services. This course also covers deploying practical solutions including securely interconnecting networks, customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring. Course Objectives This course teaches participants the following skills: Configure VPC networks and virtual machines Administer Identity and Access Management for resources Implement data storage services in Google Cloud Manage and examine billing of Google Cloud resources Monitor resources using Google Cloud services Connect your infrastructure to Google Cloud Configure load balancers and autoscaling for VM instances Automate the deployment of Google Cloud infrastructure services Leverage managed services in Google Cloud All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introduction to Google Cloud -List the different ways of interacting with Google Cloud-Use the Cloud Console and Cloud Shell-Create Cloud Storage buckets-Use the Google Cloud Marketplace to deploy solutions Module 2: Virtual Networks -List the VPC objects in Google Cloud-Differentiate between the different types of VPC networks-Implement VPC networks and firewall rules-Implement Private Google Access and Cloud NAT Module 3: Virtual Machines -Recall the CPU and memory options for virtual machines-Describe the disk options for virtual machines-Explain VM pricing and discounts-Use Compute Engine to create and customize VM instances Module 4: Cloud IAM -Describe the Cloud IAM resource hierarchy-Explain the different types of IAM roles-Recall the different types of IAM members-Implement access control for resources using Cloud IAM Module 5: Data Storage Services -Differentiate between Cloud Storage, Cloud SQL, Cloud Spanner, Cloud Firestore and Cloud Bigtable-Choose a data storage service based on your requirements-Implement data storage services Module 6: Resource Management -Describe the cloud resource manager hierarchy-Recognize how quotas protect Google Cloud customers-Use labels to organize resources-Explain the behavior of budget alerts in Google Cloud-Examine billing data with BigQuery Module 7: Resource Monitoring -Describe the services for monitoring, logging, error reporting, tracing, and debugging-Create charts, alerts, and uptime checks for resources with Cloud Monitoring-Use Cloud Debugger to identify and fix errors Module 8: Interconnecting Networks -Recall the Google Cloud interconnect and peering services available to connect your infrastructure to Google Cloud-Determine which Google Cloud interconnect or peering service to use in specific circumstances-Create and configure VPN gateways-Recall when to use Shared VPC and when to use VPC Network Peering Module 9: Load Balancing and Autoscaling -Recall the various load balancing services-Determine which Google Cloud load balancer to use in specific circumstances-Describe autoscaling behavior-Configure load balancers and autoscaling Module 10: Infrastructure Modernization -Automate the deployment of Google Cloud services using Deployment Manager or Terraform-Outline the Google Cloud Marketplace Module 11: Managed Services Describe the managed services for data processing in Google Cloud [-]
Les mer
Oslo 3 dager 21 000 kr
18 Aug
18 Aug
20 Oct
ITIL® Specialist - Create, Deliver & Support [+]
ITIL® Specialist - Create, Deliver & Support [-]
Les mer
Excel for controllere [+]
Dette kurset er innrettet mot dem som jobber med økonomisk oppfølging i bedriften. Vi går inn på prosessene fra innhenting av data, bearbeidelse av dataene, sammendrag og analyse av dataene, og til sist rapportering av dataene til bedriftens beslutningstagere. Vi bruker en god del tid på Pivot og Power Pivot her, men vi går ikke fullt så langt som i spesialkurset om Pivottabeller. Kurset forutsetter at man er godt kjent i Excel, og vant til å jobbe med litt kompliserte problemstillinger i Excel. Kontroll/gjennomgang av en del sentral funksjonalitet – bl.a. absolutte, relative og blandede referanser. Sammendrag av data fra flere ark i samme eller flere arbeidsbøker, bl.a. gjennomgående summering og tabulering v.hj.a. INDIREKTE-funksjonen. Betingende sammendrag v.hj.a. matriseformler og funksjoner Sentrale funksjoner, bl.a. HVIS, HVISFEIL, FINN.RAD, FINN.KOLONNE, ANTALL.HVIS, etc. Sammendrag av data med Pivottabell Power Pivot Formler Rapportering av data Statiske rapporter Rapporter med interaktivitet, forskjellige teknikker Visualisering av tallene Dashboard Aktuelle teknikker for å lage dashboards Avstemming av to eller flere lister mot hverandre, f.ex. bank Lister – verktøy i Excel som er aktuelle når vi jobber med lister Makroer/VBA – introduksjon til automatisering [-]
Les mer
Virtuelt eller personlig 4 dager 12 400 kr
08 Sep
13 Oct
11 Nov
Kurset vil gi en grundig gjennomgang av hovedkommandoene i Inventor. Deltagerne vil også få nødvendig forståelse for prinsipper og arbeidsmetoder i programmet. [+]
Etter gjennomført kurs skal kursdeltagerne bla. kunne bruke Inventor til å:• Lage modeller• Generere tegninger ut i fra modell• Lage sammenstillinger• Utføre de vanligste tegne- og editeringsfunksjoner• Målsette og påføre tekstKursinnhold:• Grunnleggende begrep og arbeidsmetoder • Parametrisk part-modellering• Arbeide med skisser• Features• Arbeide med sammenstillinger• 2D-layout - oppsett og innstillinger• Generere 2D-tegninger fra modell• Målsetting og innsetting av stykklister [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
3 dager 21 000 kr
Oracle Database: Analytic SQL for Data Warehousing [+]
Oracle Database: Analytic SQL for Data Warehousing [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
05 Sep
24 Oct
05 Dec
Vi ser på Excels verktøy for å analysere data og «se inn i fremtiden». Vi lager også nedtrekksmenyer, kontrollerer at brukerne legger inn godkjente data, fjerner duplikat... [+]
Gjennomgang av Excels dataverktøy med eksempler (Data/Dataverktøy) Scenariobehandling Målsøking (La Excel jobbe med å finne løsningen for deg ) Datatabeller Problemløser verktøyet Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Nettkurs 24 timer 10 900 kr
PRINCE2® Practitioner, 6th Edition, engelsk innhold  [+]
PRINCE2® Practitioner, 6th Edition, engelsk innhold  [-]
Les mer
Oslo 5 dager 27 500 kr
01 Sep
01 Sep
20 Oct
MS-102: Microsoft 365 Administrator Essentials [+]
MS-102: Microsoft 365 Administrator [-]
Les mer
Oslo Bergen 2 dager 12 900 kr
03 Sep
08 Sep
08 Sep
Automatisering i Microsoft 365 med Power Automate [+]
Automatisering i Microsoft 365 med Power Automate [-]
Les mer