IT-kurs
Gavleborg County
Du har valgt: Strömsbro
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Strömsbro ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
2 dager 15 000 kr
This 2-day course is identical to the 1-day M-AZ-900T01 course.  However this course lasts two days because of the hands-on parts. This course will prepare students for t... [+]
  COURSE OVERVIEW This course will provide foundational level knowledge of cloud services and how those services are provided with Microsoft Azure. The course can be taken as an optional first step in learning about cloud services and Microsoft Azure, before taking further Microsoft Azure or Microsoft cloud services courses. The course will cover general cloud computing concepts as well as general cloud computing models and services such as Public, Private and Hybrid cloud and Infrastructure-as-a-Service (IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service (SaaS). It will also cover some core Azure services and solutions, as well as key Azure pillar services concerning security, privacy, compliance and trust. It will finally cover pricing and support services available with Azure.   COURSE CONTENT  Module 1: Cloud Concepts -Learning Objectives-Why Cloud Services?-Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)-Public, Private, and Hybrid cloud models Module 2: Core Azure Services -Core Azure architectural components-Core Azure Services and Products-Azure Solutions-Azure management tools Module 3: Security, Privacy, Compliance and Trust -Securing network connectivity in Azure-Core Azure Identity services-Security tools and features-Azure governance methodologies-Monitoring and Reporting in Azure-Privacy, Compliance and Data Protection standards in Azure Module 4: Azure Pricing and Support -Azure subscriptions-Planning and managing costs-Support options available with Azure-Service lifecycle in Azure     This course helps to prepare for exam AZ-900. [-]
Les mer
Virtuelt klasserom 4 dager 22 000 kr
This course provides IT Identity and Access Professional, along with IT Security Professional, with the knowledge and skills needed to implement identity management solut... [+]
. This course includes identity content for Azure AD, enterprise application registration, conditional access, identity governance, and other identity tools.   TARGET AUDIENCE This course is for the Identity and Access Administrators who are planning to take the associated certification exam, or who are performing identity and access administration tasks in their day-to-day job. This course would also be helpful to an administrator or engineer that wants to specialize in providing identity solutions and access management systems for Azure-based solutions; playing an integral role in protecting an organization. COURSE OBJECTIVES Implement an identity management solution Implement an authentication and access management solutions Implement access management for apps Plan and implement an identity governancy strategy COURSE CONTENT Module 1: Implement an identity management solution Learn to create and manage your initial Azure Active Directory (Azure AD) implementation and configure the users, groups, and external identities you will use to run your solution. Lessons M1 Implement Initial configuration of Azure AD Create, configure, and manage identities Implement and manage external identities Implement and manage hybrid identity Lab 1a: Manage user roles Lab 1b: Setting tenant-wide properties Lab 1c: Assign licenses to users Lab 1d: Restore or remove deleted users Lab 1e: Add groups in Azure AD Lab 1f: Change group license assignments Lab 1g: Change user license assignments Lab 1h: Configure external collaboration Lab 1i: Add guest users to the directory Lab 1j: Explore dynamic groups After completing module 1, students will be able to: Deploy an initail Azure AD with custom settings Manage both internal and external identities Implement a hybrid identity solution Module 2: Implement an authentication and access management solution Implement and administer your access management using Azure AD. Use MFA, conditional access, and identity protection to manager your identity solution. Lessons M2 Secure Azure AD user with MFA Manage user authentication Plan, implement, and administer conditional access Manage Azure AD identity protection Lab 2a: Enable Azure AD MFA Lab 2b: Configure and deploy self-service password reset (SSPR) Lab 2c: Work with security defaults Lab 2d: Implement conditional access policies, roles, and assignments Lab 2e: Configure authentication session controls Lab 2f: Manage Azure AD smart lockout values Lab 2g: Enable sign-in risk policy Lab 2h: Configure Azure AD MFA authentication registration policy After completing module 2, students will be able to: Configure and manage user authentication including MFA Control access to resources using conditional access Use Azure AD Identity Protection to protect your organization Module 3: Implement access management for Apps Explore how applications can and should be added to your identity and access solution with application registration in Azure AD. Lessons M3 Plan and design the integration of enterprise for SSO Implement and monitor the integration of enterprise apps for SSO Implement app registration Lab 3a: Implement access management for apps Lab 3b: Create a custom role to management app registration Lab 3c: Register an application Lab 3d: Grant tenant-wide admin consent to an application Lab 3e: Add app roles to applications and recieve tokens After completing module 3, students will be able to: Register a new application to your Azure AD Plan and implement SSO for enterprise application Monitor and maintain enterprise applications Module 4: Plan and implement an identity governancy strategy Design and implement identity governance for your identity solution using entitlement, access reviews, privileged access, and monitoring your Azure Active Directory (Azure AD). Lessons M4 Plan and implement entitlement management Plan, implement, and manage access reviews Plan and implement privileged access Monitor and maintain Azure AD Lab 4a: Creat and manage a resource catalog with Azure AD entitlement Lab 4b: Add terms of use acceptance report Lab 4c: Manage the lifecycle of external users with Azure AD identity governance Lab 4d: Create access reviews for groups and apps Lab 4e: Configure PIM for Azure AD roles Lab 4f: Assign Azure AD role in PIM Lab 4g: Assign Azure resource roles in PIM Lab 4h: Connect data from Azure AD to Azure Sentinel After completing module 4, students will be able to: Mange and maintain Azure AD from creation to solution Use access reviews to maintain your Azure AD Grant access to users with entitlement management [-]
Les mer
Nettkurs 2 timer 549 kr
Vil du lære å utnytte mer av Microsoft Teams? Da anbefaler vi vårt nye nettkurs med videoundervisning, utviklet av ekspertinstruktør Espen Faugstad. Kurset er skreddersyd... [+]
Oppdag kraften i effektivt samarbeid med Microsoft Teams gjennom dette omfattende nettkurset ledet av Espen Faugstad. Kurset er skreddersydd for å gi deg en grundig forståelse av Teams' funksjoner, slik at du kan styrke kommunikasjon og samarbeid i organisasjonen din. Lær å navigere i Teams, administrere teams og kanaler, chatte effektivt, holde møter, og dele filer, samt integrere med andre Microsoft 365-applikasjoner og tredjepartsverktøy. Dette kurset er ideelt for alle roller – fra de som er ansvarlige for administrasjonen av Microsoft Teams, til teamledere som ønsker å forbedre samarbeidet, og ansatte som ønsker å jobbe mer effektivt. Meld deg på i dag for å bli en ekspert i Microsoft Teams og ta skrittet mot en mer effektiv og produktiv arbeidshverdag med veiledning fra Espen Faugstad.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Kom i gang Kapittel 3: Teams og kanaler Kapittel 4: Kommunikasjon Kapittel 5: Møter og videosamtaler Kapittel 6: Filhåndtering og samarbeid Kapittel 7: Ekstra funksjonalitet Kapittel 8: Avslutning   Varighet: 1 time og 47 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Dagens byggebransje fokuserer på BIM. Autodesk Revit Architecture er det ledende systemet i Norge for arkitekter innen BIM prosjektering. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Revit Architecture Basis I Her er et utvalg av temaene du vil lære på kurset: Introduksjon til BIM Modellering av 3D-bygningsmodell i flere detaljeringsgrader (informasjonsnivåer) Samarbeid med andre fagmodeller Generering av planer, snitt, fasader, detaljer og perspektiver Skjemaer og mengdeuttrekk Oppsetning til print A Anvendelse av relevante NTItools Kurset gir deg innblikk i bruken av BIM-arbeidsmetoder med Revit som hovedverktøy. Det bygges opp en full, parametrisk 3D-modell, hvor de grunnleggende funksjonene i Revit benyttes. DU vil få en bred forståelse av både prinsipper og funksjoner i Revit og skal bli i stand til å øke detaljeringen av prosjektet ytterligere.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Nettkurs 2 timer 1 990 kr
Instruktørbasert opplæring: Det er utrolig hva du kan få til i Excel modeller ved å legge til enkel automatisering. Bli inspirert til å utforske de uendelige mulighe... [+]
Det er utrolig hva du kan få til i Excel modeller ved å legge til enkel automatisering med Excel macro. Bli inspirert til å utforske de uendelige mulighetene Excel makroer gir! Webinaret kan også spesialtilpasses og holdes bedriftsinternt kun for din bedrift.   Kursinnhold:   Generelt om bruk av makro i Excel Åpne arbeidsbok med makro Kategori Utvikler og makroinnstillinger Innspiling av makro Innsetting av knapp i regnearket Enkelt redigering av kode Bruk av navngiving Bruk av If setning Bruk av MsgBox Lagre arbeidsbok med makro [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Virtuelt eller personlig 3 timer 12 480 kr
Vi tilbyr kurs i Revit Structure basis 1. Du vil få en en grunnleggende kjennskap til å arbeide med Revit Structure, og til prosessen i samarbeidet med en arkitekt basert... [+]
Agenda:• Introduksjon til BIM• Link av Revit-modeller• Koordinering av modeller• Utarbeidelse av generisk modell• Arbeide med eksisterende families• Håndtering av forandringer i grunnlaget• Snitt og detaljer• Skjemaer og uttrekk• Oppsetning til print [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course covers three central elements of Microsoft 365 enterprise administration: Microsoft 365 tenant and service management, Office 365 management, and Microsoft 36... [+]
COURSE OVERVIEW  In Microsoft 365 tenant and service management, you will examine all the key components that must be planned for when designing your Microsoft 365 tenant. Once this planning phase is complete, you will learn how to configure your Microsoft 365 tenant, including your organizational profile, tenant subscription options, component services, user accounts and licenses, and security groups. Finally, you will learn how to manage your tenant, which includes the configuration of tenant roles and managing your tenant health and services. With your Microsoft 365 tenant now firmly in place, you will examine the key components of Office 365 management. This begins with an overview of Office 365 product functionality, including Exchange Online, SharePoint Online, Microsoft Teams, additional product resources, and device management. You will then transition to configuring Office 365, with a primary focus on configuring Office client connectivity to Office 365. Finally, you will examine how to manage Office 365 ProPlus deployments, from user-driven client installations to centralized Office 365 ProPlus deployments. You will wrap up this section by learning how to configure Office Telemetry and Microsoft Analytics. The course concludes with an in-depth examination of Microsoft 365 identity synchronization, with a focus on Azure Active Directory Connect. You will learn how to plan for and implement Azure AD Connect, how to manage synchronized identities, and how to implement password management in Microsoft 365 using multi-factor authentication and self-service password management. This section wraps up with a comprehensive look at implementing application and external access. You will learn how to add and manage applications in Azure Active Directory, including how to configure multi-tenant applications. You will then examine how to configure Azure AD Application Proxy, including how to install and register a connector and how to publish an on-premises app for remote access. Finally, you will examine how to design and manage solutions for external access. This includes licensing guidance for Azure AD B2B collaboration, creating a collaborative user, and troubleshooting a B2B collaboration. TARGET AUDIENCE This course is designed for persons who are aspiring to the Microsoft 365 Enterprise Admin role and have completed one of the Microsoft 365 role-based administrator certification paths. COURSE OBJECTIVES Designing, configuring, and managing your Microsoft 365 tenant Office 365 product functionality Configuring Office 365 Managing Office 365 ProPlus deployments Planning and implementing identity synchronization Implementing application and external access COURSE CONTENT Module 1: Designing Your Microsoft 365 Tenant Planning Microsoft 365 in your On-premises Infrastructure Planning Your Identity and Authentication Solution Planning Your Service Setup Planning Your Hybrid Enviroment Planning Your Migration to Office 365 Module 2: Configuring Your Microsoft 365 Tenant Planning  Your Microsoft 365 Experience Configuring  Your Microsoft 365 Experience Managing User Accounts and Licenses in Microsoft 365 Managing Security Groups in Microsoft 365 Implementing Your Domain Services Leveraging FastTrack and Partner Services Module 3: Lab 1 - Configuring your Microsoft 365 Tenant Exercise 1 - Set up a Microsoft 365 Trial Tenant Module 4: Managing Your Microsoft 365 Tenant Configuring Tenant Roles Managing Tenant Health and Services Module 5: Lab 2 - Managing your Microsoft 365 Tenant Exercise 1 - Manage Administration Delegation Exercise 2 - Configure Office 365 Message Encryption (OME) Exercise 3 - Monitor and Troubleshoot Office 365 Module 6: Office 365 Overview Exchange Online Overview SharePoint Online Overview Teams Overview Additional Resources Overview Device Management Overview Module 7: Lab 3 - Office 365 Overview Exercise 1 - Exchange Online Overview Exercise 2 - SharePoint Online Overview Exercise 3 - Teams Overview Module 8: Configuring  Office 365 Office 365 Client Overview Configuring Office Client Connectivity to Office 365 Module 9: Managing Office 365 ProPlus Deployments Managing User-Driven Client Installations Managing Centralized Office 365 ProPlus Deployments Configuring Office Telemetry Configuring Microsoft Analytics Module 10: Lab 4 - Managing Office 365 ProPlus installations Exercise 1 - Prepare an Office 365 ProPlus Managed Installation Exercise 2 - Manage a Centralized Office 365 ProPlus Installation Exercise 3 - Deploy and Configure Office Telemetry Components Module 11: Planning and Implementing Identity Synchronization Introduction to Identity Synchronization Planning for Azure AD Connect Implementing Azure AD Connect Managing Synchronized Identities Password Management in Microsoft 365 Module 12: Lab 5 - Implementing Identity Synchronization Exercise 1 - Set up your organization for identity synchronization Exercise 2 - Implement Identity Synchronization Module 13: Implementing Application and External Access Implementing Applications in Azure AD Configuring Azure AD App Proxy Designing Solutions for External Access TEST CERTIFICATION This course helps you to prepare for exam MS100. But as this is part of an expert certification you should already own one of the Microsoft 365 Associate certifications:  Modern Desktop Teamwork Administrator Security Administrator Messaging Administrator. [-]
Les mer
Nettkurs 12 måneder 9 500 kr
Målet med kurset er å gi deg en forståelse for filosofien bak ITIL®. Kurset gir innføring i basis konseptet, prinsippene, prosessene og funksjonene som er definert som be... [+]
Kurset inneholder 12 timer med undervisning, er delt inn i moduler og er en blanding av video og interaktive øvelse. Du vil få en omfattende introduksjon til kjernekonseptene til ITIL® 4.   Les mer om ITIL® 4 på AXELOS sine websider    The ITIL®  4 Foundation Online course on this page is offered by ILX Group an ATO of AXELOS Limited. ITIL® 4 is a registered trade mark of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved.   Dette inngår i kurset - 12 måneders tilgang til kurset fra kjøpsdato- Support service- En testmodul med spørsmål rettet mot sertifiseringseksamen Sertifiseringseksamen - Eksamens voucher er inklusive i kurset- Det er ingen hjelpemidler tillatt under eksamen- Varighet er 60 minutter, men et tillegg på 15 minutter for de som ikke har engelsk som morsmål- Eksamensformen er multiple choice - 40 spørsmål skal besvares, og du består ved 65% korrekte svar (dvs 26 av 40 spørsmål) Disse modulene inngår i kurset - Introduction and overview- Key concepts of service management- Four dimensions of service management- Service value system- Introduction to practices- Purpose of 11 practices and some definitions- Introduction to seven key practices in detail- Continual improvement- Change control- Incident management- Service request management- Service desk- Service level management- Exam simulator Etter endt kurs vil du - Forstå nøkkelkonseptene for ITIL-Service Management- Forstå hvordan ITIL-veiledende prinsipper kan hjelpe organisasjoner til å ta i bruk og tilpasse ITIL-Service Management- Forstå de fire dimensjonene i ITIL-Service Management- Forstå nøkkelbegrepene for kontinuerlig forbedring [-]
Les mer
Virtuelt eller personlig 1 dag 3 120 kr
Målsetning for kurset: Opparbeide ferdigheter i å navigere, kommunisere og hente ut informasjon fra BIM-modeller i IFC-formatet med bruk av Solibri Anywhere. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt.NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Solibri Anywhere og Site   På kurset vil du lære å: Sammenstille flere IFC-modeller og navigere i disse Velge ut grupper av objekter for nærmere studier Legge inn snitt, måle, markere og opprette slides fra visninger av modellen Opprette rapporter og kommentere «issues» i Excel og BCF-format Se på resultatet av utførte regelsjekker i modellen Se på resultatet av utførte informasjons- og mengdeuttak fra modellen Høste informasjon og mengder fra modellen basert på eksisterende maler og klassifikasjoner Skape egne klassifikasjoner og definisjoner for megndeuttak   Dette er et populært kurs, meld deg på nå! Spesialtilpasset kurs: NTI anbefaler spesialtilpassede kurs for bedrifter som planlegger å sende to eller flere deltakere på Solibri-kurs. Grunnen til dette er at Solibri brukes av mange forskjellige aktører og profesjoner i BAE-bransjen, og følgelig blir de åpne kursene ofte for generelle for enkelte kursdeltakere. I et spesialtilpasset kurs vil vår kurskonsulent kartlegge fokusområdene i forkant av kurset, og gjennomføre kurset i henhold til selskapets behov, gjerne basert på kundens egne modeller. Utbyttet av kurset blir følgelig mye større.  Ta kontakt med oss på telefon 483 12 300, epost: salg-no@nti.biz eller les mer på www.nti.biz   [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 3 timer 549 kr
Dette nettkurset er perfekt for deg som allerede har noen grunnleggende ferdigheter i Python og ønsker å lære objektorientert programmering (OOP). Med OOP vil du kunne re... [+]
Dette nettkurset fokuserer på objektorientert programmering (OOP) i Python og er ideelt for de som allerede har grunnleggende ferdigheter i Python og ønsker å utvide sine kunnskaper. OOP gir deg muligheten til å skrive kode som er mer strukturert, gjenbrukbar og enklere å vedlikeholde. Kurset, ledet av erfaren systemutvikler og instruktør Magnus Kvendseth Øye, vil veilede deg gjennom nøkkelkonsepter innen OOP i Python. I løpet av kurset vil du lære å se på koden din som en samling av dynamiske objekter som samhandler med hverandre. Du vil utforske følgende emner: Kapittel 1: Introduksjon Kapittel 2: Klasser og egenskaper Kapittel 3: Metoder Kapittel 4: Representasjon Kapittel 5: Arv Kapittel 6: Prosjekt Kapittel 7: Avslutning Med Magnus Kvendseth Øye som din veileder, vil du få en solid forståelse av hvordan du kan bruke OOP-prinsipper i Python for å skape ren, effektiv og strukturert kode. Dette kurset gir deg muligheten til å ta dine Python-ferdigheter til neste nivå.   Varighet: 3 timer og 8 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Kurset MagiCAD VVS for AutoCAD gir en gjennomgang av prosjektering av ventilasjon- og rørinstallasjoner i MagiCAD og AutoCAD. [+]
Fleksible kurs for fremtiden Ny kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   MagiCAD VVS for AutoCAD grunnkurs Her er et utvalg av temaene du vil lære på kurset: Etablering av prosjekt Prosjektering av ventilasjonsanlegg, varmeanlegg, og sanitæranlegg Sammenkobling av systemer gjennom flere tegninger Tekstefunksjoner, snitt, tegninger til utskrift Beregninger, utbalansering, lyd, mengdeberegning Bruk av leverandørspesifike produkter Kollisjonskontroll Automatisk generering av utsparinger Deltakerne skal lære å håndtere tegninger i et prosjekt; arkitekt, VVS-tegninger etc. De skal lære å berike en VVS-modell slik at mest mulig informasjon kan nyttes med hensyn til BIM, 2D-tegninger, strømningstekniske beregninger og lydberegninger. Tilpassete kurs for bedrifter Vi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer