IT-kurs
Troms
Du har valgt: Sørreisa kommune
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Sørreisa kommune ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of the Service Level Management Practice, elucidating its significance in defining, negotiating, and managing service levels to meet customer expectations. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Virtuelt klasserom 2 dager 8 900 kr
Dette er kurset som passer for deg som har basisferdighetene på plass og som ønsker å lære flere avanserte muligheter i programmet. Her kan du virkelig lære hvordan ... [+]
Kursinstruktør   Geir Johan Gylseth Geir Johan Gylseth er utdannet ved Universitetet i Oslo med hovedvekt på Informatikk og har over 30 års erfaring som instruktør. Geir sin styrke ligger innenfor MS Office. Han har lang erfaring med skreddersøm av kurs, kursmanualer og oppgaver. Geir er en entusiastisk og dyktig instruktør som får meget gode evalueringer. Kursinstruktør   Jonny Austad Jonny Austad er utdannet som Adjunkt og har jobbet som lærer og instruktør siden 1989. Han har dessuten jobbet mye med support og drifting av nettverk og vet som oftest hva som er vanlige problemer ute i bedriftene. Han var den første Datakort-læreren i landet (høsten 1997), og har Office-pakken med spesielt Excel som sitt hjertebarn. Jonny er en meget hyggelig og utadvendt person som elsker å undervise med smarte løsninger på problemer samt vise smarte tips og triks i de ulike programmene. Kursinnhold Kurset passer for deg som har basisferdighetene på plass men som ønsker å lære mer. Kurset passer også for deg som er selvlært og som ønsker å jobbe mer effektivt. Bruk av stiler gir profesjonelle og flotte dokumenter. Lær å lage innholdsfortegnelse, stikkordliste og figurliste automatisk. Profesjonelt sideoppsett med spalter, marger, sidefarger, sidekantlinjer og dokumenttemaer. Auto korrektur, byggeblokker, egenskaper og felt gjør det enklere å gjenbruke tekst. Flere deldokumenter kan samles i et hoved dokument ved hjelp av hoveddokumentvisning. I lange dokumenter kan du ha uliketopp- og bunntekster og selv bestemme side nummerering. For å friske opp et dokument kan du sette inn utklipp, figurer, SmartArt og diagram. Med tekstbokser kan du presentere sitater eller sammendrag fra dokumentet. Tabeller kan brukes til å presentere informasjon på en oversiktlig måte men kan også sorteres og inneholde beregninger. Maler brukes for å sikre at dokumenter av samme type får en ensartet formatering. Felt, innholdskontroller og skjemakontroller kan settes inn for å effektivisere bruken av maler. Med makroer kan du effektivisere avanserte oppgaver som består av serie med handlinger. Med fletting kan du masseprodusere brev, konvolutter, etiketter og e-post. I tillegg får du en rekke tips og triks du kan bruke i din arbeidsdag.  Alt du lærer får du repetert gjennom aktiv oppgaveløsning slik at du husker det du har lært når du kommer tilbake på jobb. Kursdokumentasjon, lunsj og pausemat er selvsagt inkludert! Kursholderne har mer enn 20 års Word erfaring som de gjerne deler med deg! Meld deg på Word-kurs allerede i dag og sikre deg plass! Lær deg: behandling av stiler rask og enkel opprettelse av innholdsfortegnelse sette inn forsider samarbeid om felles dokument spalter beregninger i tabeller innsetting av diagram sett inn bilder og bildetekst grafikk og tegning maler og skjema bruk av makroer integrasjon med Excel og andre programmer [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
03 Sep
22 Oct
03 Dec
Du arver et regneark fra en kollega som har sluttet eller gått over i en annen stilling, eller andre har laget et regneark som du skal bruke og utvikle. Hvordan går du fr... [+]
Kursinnhold Enkle formler Cellereferanser Gi navn til celler og områder Feilkontroll og formelrevisjon Hente data fra andre ark og arbeidsbøker Egendefinerte tallformater Betinget formatering Utklippstavle og avansert innliming   Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer.   Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course covers three central elements of Microsoft 365 enterprise administration – Microsoft 365 security management, Microsoft 365 compliance management, and Microso... [+]
 In Microsoft 365 security management, you will examine all the common types of threat vectors and data breaches facing organizations today, and you will learn how Microsoft 365’s security solutions address these security threats. Global Knowledge will introduce you to the Microsoft Secure Score, as well as to Azure Active Directory Identity Protection. You will then learn how to manage the Microsoft 365 security services, including Exchange Online Protection, Advanced Threat Protection, Safe Attachments, and Safe Links. Finally, you will be introduced to the various reports that monitor your security health. You will then transition from security services to threat intelligence; specifically, using the Security Dashboard and Advanced Threat Analytics to stay ahead of potential security breaches. TARGET AUDIENCE This course is designed for persons who are aspiring to the Microsoft 365 Enterprise Admin role and have completed one of the Microsoft 365 work load administrator certification paths. COURSE OBJECTIVES By actively participating in this course, you will learn about the following: Microsoft 365 Security Metrics Microsoft 365 Security Services Microsoft 365 Threat Intelligence Data Governance in Microsoft 365 Archiving and Retention in Office 365 Data Governance in Microsoft 365 Intelligence Search and Investigations Device Management Windows 10 Deployment Strategies Mobile Device Management COURSE CONTENT Module 1: Introduction to Microsoft 365 Security Metrics Threat Vectors and Data Breaches Security Solutions in Microsoft 365 Introduction to the Secure Score Introduction to Azure Active Directory Identity Protection Module 2: Managing Your Microsoft 365 Security Services Introduction to Exchange Online Protection Introduction to Advanced Threat Protection Managing Safe Attachments Managing Safe Links Monitoring and Reports Module 3: Lab 1 - Manage Microsoft 365 Security Services Exercise 1 - Set up a Microsoft 365 Trial Tenant Exercise 2 - Implement an ATP Safe Links policy and Safe Attachment policy Module 4: Microsoft 365 Threat Intelligence Overview of Microsoft 365 Threat Intelligence Using the Security Dashboard Configuring Advanced Threat Analytics Implementing Your Cloud Application Security Module 5: Lab 2 - Implement Alert Notifications Using the Security Dashboard Exercise 1 - Prepare for implementing Alert Policies Exercise 2 - Implement Security Alert Notifications Exercise 3 - Implement Group Alerts Exercise 4 - Implement eDiscovery Alerts Module 6: Introduction to Data Governance in Microsoft 365 Introduction to Archiving in Microsoft 365 Introduction to Retention in Microsoft 365 Introduction to Information Rights Management Introduction to Secure Multipurpose Internet Mail Extension Introduction to Office 365 Message Encryption Introduction to Data Loss Prevention Module 7: Archiving and Retention in Office 365 In-Place Records Management in SharePoint Archiving and Retention in Exchange Retention Policies in the SCC Module 8: Lab 3 - Implement Archiving and Retention Exercise 1 - Initialize Compliance in Your Organization Exercise 2 - Configure Retention Tags and Policies Exercise 3 - Implement Retention Policies Module 9: Implementing Data Governance in Microsoft 365 Intelligence Planning Your Security and Complaince Needs Building Ethical Walls in Exchange Online Creating a Simple DLP Policy from a Built-in Template Creating a Custom DLP Policy Creating a DLP Policy to Protect Documents Working with Policy Tips Module 10: Lab 4 - Implement DLP Policies Exercise 1 - Manage DLP Policies Exercise 2 - Test MRM and DLP Policies Module 11: Managing Data Governance in Microsoft 365 Managing Retention in Email Troubleshooting Data Governance Implementing Azure Information Protection Implementing Advanced Features of AIP Implementing Windows Information Protection Module 12: Lab 5 - Implement AIP and WIP Exercise 1 - Implement Azure Information Protection Exercise 2 - Implement Windows Information Protection Module 13: Managing Search and Investigations Searching for Content in the Security and Compliance Center Auditing Log Investigations Managing Advanced eDiscovery Module 14: Lab 6 - Manage Search and Investigations Exercise 1 - Investigate Your Microsoft 365 Data Exercise 2 - Configure and Deploy a Data Subject Request Module 15: Planning for Device Management Introduction to Co-management Preparing Your Windows 10 Devices for Co-management Transitioning from Configuration Manager to Intune Introduction to Microsoft Store for Business Planning for Mobile Application Management Module 16: Lab 7 - Implement the Microsoft Store for Business Exercise 1 - Configure the Microsoft Store for Business Exercise 2 - Manage the Microsoft Store for Business Module 17: Planning Your Windows 10 Deployment Strategy Windows 10 Deployment Scenarios Implementing Windows Autopilot Planning Your Windows 10 Subscription Activation Strategy Resolving Windows 10 Upgrade Errors Introduction to Windows Analytics Module 18: Implementing Mobile Device Management Planning Mobile Device Management Deploying Mobile Device Management Enrolling Devices to MDM Managing Device Compliance Module 19: Lab 8 - Manage Devices with Intune Exercise 1 - Enable Device Management Exercise 2 - Configure Azure AD for Intune Exercise 3 - Create Intune Policies Exercise 4 - Enroll a Windows 10 Device Exercise 5 - Manage and Monitor a Device in Intune TEST CERTIFICATION This course helps you to prepare for exam MS101. [-]
Les mer
Oslo 5 dager 46 500 kr
04 Aug
15 Sep
13 Oct
ENCOR: Implementing and Operating Cisco Enterprise Network Core Technologies [+]
ENCOR: Implementing and Operating Cisco Enterprise Network Core Technologies [-]
Les mer
Excel for controllere [+]
Dette kurset er innrettet mot dem som jobber med økonomisk oppfølging i bedriften. Vi går inn på prosessene fra innhenting av data, bearbeidelse av dataene, sammendrag og analyse av dataene, og til sist rapportering av dataene til bedriftens beslutningstagere. Vi bruker en god del tid på Pivot og Power Pivot her, men vi går ikke fullt så langt som i spesialkurset om Pivottabeller. Kurset forutsetter at man er godt kjent i Excel, og vant til å jobbe med litt kompliserte problemstillinger i Excel. Kontroll/gjennomgang av en del sentral funksjonalitet – bl.a. absolutte, relative og blandede referanser. Sammendrag av data fra flere ark i samme eller flere arbeidsbøker, bl.a. gjennomgående summering og tabulering v.hj.a. INDIREKTE-funksjonen. Betingende sammendrag v.hj.a. matriseformler og funksjoner Sentrale funksjoner, bl.a. HVIS, HVISFEIL, FINN.RAD, FINN.KOLONNE, ANTALL.HVIS, etc. Sammendrag av data med Pivottabell Power Pivot Formler Rapportering av data Statiske rapporter Rapporter med interaktivitet, forskjellige teknikker Visualisering av tallene Dashboard Aktuelle teknikker for å lage dashboards Avstemming av to eller flere lister mot hverandre, f.ex. bank Lister – verktøy i Excel som er aktuelle når vi jobber med lister Makroer/VBA – introduksjon til automatisering [-]
Les mer
Nettstudie 11 800 kr
Med utgangspunkt i automasjon i bygg lærere du I denne utdanningen lærer du om grunnleggende programmering i HTML, Python, og JavaScript, mobilapp-utvikling, samt prosjek... [+]
Koding automasjon i bygg Denne fagskole utdanningens innhold tilsvarer 5 studiepoeng og utdanning er på nettet.  Maksimalt antall studieplasser er 25. Utdanningen er praktisk tilrettelagt, slik at du kan anvende teori og kunnskap i praksis. Du vil få mulighet til å jobbe med reelle og aktuelle problemstillinger, og du vil få tilbakemelding fra erfarne fagfolk. Læremateriellet består av video, podkaster, resyme av fagstoff, artikler, forskningsrapporter, foredrag, presentasjon av fagstoff, samt quizer og annet. Læremateriellet du får tilgang til er på en LMS som er under kontinuerlig utvikling og oppdatering. Du får ett års tilgang til læremateriell, etter at utdanningen er ferdig, på Learning Management System (LMS) I denne utdanningen lærer du om: Installere Python på egen PC (Spyder): Veiledning for hvordan du installerer Python og Spyder IDE for å utvikle Python-programmer. Introduksjon til programmering i: HTML: Grunnleggende om HTML-strukturer og webutvikling. Python: Introduksjon til grunnleggende programmeringskonsepter, inkludert: Variabler og Datatyper: Opprettelse og bruk av variabler med ulike datatyper som heltall (integers), desimaltall (floats), strenger (strings), lister (lists), tupler (tuples), og dictionaries (dictionaries). Operatorer: Bruk av matematiske, sammenlignings-, og logiske operatorer for beregninger og verdikomparasjoner. Løkker: Implementering av kontrollstrukturer som if-setninger, for- og while-løkker, samt avvikshantering med try og except for å styre programflyten. Funksjoner: Definisjon og anvendelse av funksjoner for å organisere koden i moduler og forbedre lesbarheten og vedlikeholdbarheten. Input og Output: Håndtering av datainnlesning fra bruker og datavisning til skjermen. Moduler og Biblioteker: Utforsking av innebygde og tredjepartsmoduler for å utvide programmets funksjonalitet. Filstyring: Åpning, lesing, skriving, og lukking av filer. Strukturering av kode: Organisering av kode ved hjelp av funksjoner, klasser, og moduler for bedre lesbarhet og vedlikehold. JavaScript: Grunnleggende programmeringskonsepter for å utvikle interaktive webapplikasjoner. Programmere App til mobil telefon: Introduksjon til å kunne programmere Android-apps. Fra sensor til web: Utvikling av programmer fra grunnen av, fra å programmere Arduino UNO som en Modbus RTU slave til å utvikle en Modbus RTU master i Python. Konfigurasjon av egen PC som webserver (IIS) for å støtte webapplikasjoner. Integrert prosjektarbeid som involverer programmering fra sensor til web, som kombinerer hardware og software for å samle, behandle, og presentere data. Inkluderer API-er (Application Programming Interfaces) og tekniske beskrivelser. Du velger selv prosjektoppgave: Oppgaven kan for eksempel innebære å innhente data via API fra https://www.yr.no/ eller en annen nettressurs. Ved å anvende Modbus for I/O på Arduino, er det mulig å utvikle et system som både overvåker og regulerer energiforbruket ditt. Brukergrensesnittet kan være basert på web, og konfigureres på din egen datamaskin. Denne utdanningen danner et solid fundament for videre læring og anvendelse av disse konseptene i automasjon i bygg. Bedriftsinterne utdanning tilpasset din bedrift Denne utdanningen kan tilbys som en bedriftsintern utdanning. Det faglige innholdet er fastsatt, men den faglige tilnærmingen kan tilpasses den enkelte bedrifts behov og ønsker. Ta kontakt for en prat, så kan vi sammen lage et utdanningsløp som passer for deg og din bedrift. Kontaktpersoner er Hans Gunnar Hansen (tlf. 91101824) og Vidar Luth-Hanssen (tlf. 91373153) [-]
Les mer
Virtuelt klasserom 2 dager 14 000 kr
In this course, the students will design various data platform technologies into solutions that are in line with business and technical requirements. This can include on-... [+]
The students will also explore how to design data security including data access, data policies and standards. They will also design Azure data solutions which includes the optimization, availability and disaster recovery of big data, batch processing and streaming data solutions. Agenda Module 1: Data Platform Architecture Considerations. -Core Principles of Creating Architectures-Design with Security in Mind-Performance and Scalability-Design for availability and recoverability-Design for efficiency and operations-Case Study Module 2: Azure Batch Processing Reference Architectures. -Lambda architectures from a Batch Mode Perspective-Design an Enterprise BI solution in Azure-Automate enterprise BI solutions in Azure-Architect an Enterprise-grade Conversational Bot in Azure Module 3: Azure Real-Time Reference Architectures. -Lambda architectures for a Real-Time Perspective-Lambda architectures for a Real-Time Perspective-Design a stream processing pipeline with Azure Databricks-Create an Azure IoT reference architecture Module 4: Data Platform Security Design Considerations. -Defense in Depth Security Approach-Network Level Protection-Identity Protection-Encryption Usage-Advanced Threat Protection Module 5: Designing for Resiliency and Scale. -Design Backup and Restore strategies-Optimize Network Performance-Design for Optimized Storage and Database Performance-Design for Optimized Storage and Database Performance-Incorporate Disaster Recovery into Architectures-Design Backup and Restore strategies Module 6: Design for Efficiency and Operations. -Maximizing the Efficiency of your Cloud Environment-Use Monitoring and Analytics to Gain Operational Insights-Use Automation to Reduce Effort and Error [-]
Les mer
Klasserom + nettkurs 4 dager 21 000 kr
This course teaches IT Professionals how to manage core Windows Server workloads and services using on-premises, hybrid, and cloud technologies. [+]
COURSE OVERVIEW The course teaches IT Professionals how to implement and manage on-premises and hybrid solutions such as identity, management, compute, networking, and storage in a Windows Server hybrid environment. TARGET AUDIENCE This four-day course is intended for Windows Server Hybrid Administrators who have experience working with Windows Server and want to extend the capabilities of their on-premises environments by combining on-premises and hybrid technologies. Windows Server Hybrid Administrators implement and manage on-premises and hybrid solutions such as identity, management, compute, networking, and storage in a Windows Server hybrid environment. COURSE OBJECTIVES After you complete this course you will be able to: Use administrative techniques and tools in Windows Server. Identify tools used to implement hybrid solutions, including Windows Admin Center and PowerShell. Implement identity services in Windows Server. Implement identity in hybrid scenarios, including Azure AD DS on Azure IaaS and managed AD DS. Integrate Azure AD DS with Azure AD. Manage network infrastructure services. Deploy Azure VMs running Windows Server, and configure networking and storage. Administer and manage Windows Server IaaS Virtual Machine remotely. Manage and maintain Azure VMs running Windows Server. Configure file servers and storage. Implement File Services in hybrid scenarios, using Azure Files and Azure File Sync. COURSE CONTENT Module 1: Identity services in Windows Server This module introduces identity services and describes Active Directory Domain Services (AD DS) in a Windows Server environment. The module describes how to deploy domain controllers in AD DS, as well as Azure Active Directory (AD) and the benefits of integrating Azure AD with AD DS. The module also covers Group Policy basics and how to configure group policy objects (GPOs) in a domain environment. Lessons for module 1 Introduction to AD DS Manage AD DS domain controllers and FSMO roles Implement Group Policy Objects Manage advanced features of AD DS Lab : Implementing identity services and Group Policy Deploying a new domain controller on Server Core Configuring Group Policy After completing module 1, students will be able to: Describe AD DS in a Windows Server environment. Deploy domain controllers in AD DS. Describe Azure AD and benefits of integrating Azure AD with AD DS. Explain Group Policy basics and configure GPOs in a domain environment. Module 2: Implementing identity in hybrid scenarios This module discusses how to configure an Azure environment so that Windows IaaS workloads requiring Active Directory are supported. The module also covers integration of on-premises Active Directory Domain Services (AD DS) environment into Azure. Finally, the module explains how to extend an existing Active Directory environment into Azure by placing IaaS VMs configured as domain controllers onto a specially configured Azure virtual network (VNet) subnet. Lessons for module 2 Implement hybrid identity with Windows Server Deploy and manage Azure IaaS Active Directory domain controllers in Azure Lab : Implementing integration between AD DS and Azure AD Preparing Azure AD for AD DS integration Preparing on-premises AD DS for Azure AD integration Downloading, installing, and configuring Azure AD Connect Verifying integration between AD DS and Azure AD Implementing Azure AD integration features in AD DS After completing module 2, students will be able to: Integrate on-premises Active Directory Domain Services (AD DS) environment into Azure. Install and configure directory synchronization using Azure AD Connect. Implement and configure Azure AD DS. Implement Seamless Single Sign-on (SSO). Implement and configure Azure AD DS. Install a new AD DS forest on an Azure VNet. Module 3: Windows Server administration This module describes how to implement the principle of least privilege through Privileged Access Workstation (PAW) and Just Enough Administration (JEA). The module also highlights several common Windows Server administration tools, such as Windows Admin Center, Server Manager, and PowerShell. This module also describes the post-installation confguration process and tools available to use for this process, such as sconfig and Desired State Configuration (DSC). Lessons for module 3 Perform Windows Server secure administration Describe Windows Server administration tools Perform post-installation configuration of Windows Server Just Enough Administration in Windows Server Lab : Managing Windows Server Implementing and using remote server administration After completing module 3, students will be able to: Explain least privilege administrative models. Decide when to use privileged access workstations. Select the most appropriate Windows Server administration tool for a given situation. Apply different methods to perform post-installation configuration of Windows Server. Constrain privileged administrative operations by using Just Enough Administration (JEA). Module 4: Facilitating hybrid management This module covers tools that facilitate managing Windows IaaS VMs remotely. The module also covers how to use Azure Arc with on-premises server instances, how to deploy Azure policies with Azure Arc, and how to use role-based access control (RBAC) to restrict access to Log Analytics data. Lessons for module 4 Administer and manage Windows Server IaaS virtual machines remotely Manage hybrid workloads with Azure Arc Lab : Using Windows Admin Center in hybrid scenarios Provisioning Azure VMs running Windows Server Implementing hybrid connectivity by using the Azure Network Adapter Deploying Windows Admin Center gateway in Azure Verifying functionality of the Windows Admin Center gateway in Azure After completing module 4, students will be able to: Select appropriate tools and techniques to manage Windows IaaS VMs remotely. Explain how to onboard on-premises Windows Server instances in Azure Arc. Connect hybrid machines to Azure from the Azure portal. Use Azure Arc to manage devices. Restrict access using RBAC. Module 5: Hyper-V virtualization in Windows Server This modules describes how to implement and configure Hyper-V VMs and containers. The module covers key features of Hyper-V in Windows Server, describes VM settings, and how to configure VMs in Hyper-V. The module also covers security technologies used with virtualization, such as shielded VMs, Host Guardian Service, admin-trusted and TPM-trusted attestation, and Key Protection Service (KPS). Finally, this module covers how to run containers and container workloads, and how to orchestrate container workloads on Windows Server using Kubernetes. Lessons for module 5 Configure and manage Hyper-V Configure and manage Hyper-V virtual machines Secure Hyper-V workloads Run containers on Windows Server Orchestrate containers on Windows Server using Kubernetes Lab : Implementing and configuring virtualization in Windows Server Creating and configuring VMs Installing and configuring containers After completing module 5, students will be able to: Install and configure Hyper-V on Windows Server. Configure and manage Hyper-V virtual machines. Use Host Guardian Service to protect virtual machines. Create and deploy shielded virtual machines. Configure and manage container workloads. Orchestrate container workloads using a Kubernetes cluster. Module 6: Deploying and configuring Azure VMs This module describes Azure compute and storage in relation to Azure VMs, and how to deploy Azure VMs by using the Azure portal, Azure CLI, or templates. The module also explains how to create new VMs from generalized images and use Azure Image Builder templates to create and manage images in Azure. Finally, this module describes how to deploy Desired State Configuration (DSC) extensions, implement those extensions to remediate noncompliant servers, and use custom script extensions. Lessons for module 6 Plan and deploy Windows Server IaaS virtual machines Customize Windows Server IaaS virtual machine images Automate the configuration of Windows Server IaaS virtual machines Lab : Deploying and configuring Windows Server on Azure VMs Authoring Azure Resource Manager (ARM) templates for Azure VM deployment Modifying ARM templates to include VM extension-based configuration Deploying Azure VMs running Windows Server by using ARM templates Configuring administrative access to Azure VMs running Windows Server Configuring Windows Server security in Azure VMs After completing module 6, students will be able to: Create a VM from the Azure portal and from Azure Cloud Shell. Deploy Azure VMs by using templates. Automate the configuration of Windows Server IaaS VMs. Detect and remediate noncompliant servers. Create new VMs from generalized images. Use Azure Image Builder templates to create and manage images in Azure. Module 7: Network infrastructure services in Windows Server This module describes how to implement core network infrastructure services in Windows Server, such as DHCP and DNS. This module also covers how to implement IP address managment and how to use Remote Access Services. Lessons for module 7 Deploy and manage DHCP Implement Windows Server DNS Implement IP address management Implement remote access Lab : Implementing and configuring network infrastructure services in Windows Server Deploying and configuring DHCP Deploying and configuring DNS After completing module 7, students will be able to: Implement automatic IP configuration with DHCP in Windows Server. Deploy and configure name resolution with Windows Server DNS. Implement IPAM to manage an organization’s DHCP and DNS servers, and IP address space. Select, use, and manage remote access components. Implement Web Application Proxy (WAP) as a reverse proxy for internal web applications. Module 8: Implementing hybrid networking infrastructure This module describes how to connect an on-premises environment to Azure and how to configure DNS for Windows Server IaaS virtual machines. The module covers how to choose the appropriate DNS solution for your organization’s needs, and run a DNS server in a Windows Server Azure IaaS VM. Finally, this module covers how to manage manage Microsoft Azure virtual networks (VNets) and IP address configuration for Windows Server infrastructure as a service (IaaS) virtual machines. Lessons for module 8 Implement hybrid network infrastructure Implement DNS for Windows Server IaaS VMs Implement Windows Server IaaS VM IP addressing and routing Lab : Implementing Windows Server IaaS VM networking Implementing virtual network routing in Azure Implementing DNS name resolution in Azure After completing module 8, students will be able to: Implement an Azure virtual private network (VPN). Configure DNS for Windows Server IaaS VMs. Run a DNS server in a Windows Server Azure IaaS VM. Create a route-based VPN gateway using the Azure portal. Implement Azure ExpressRoute. Implement an Azure wide area network (WAN). Manage Microsoft Azure virtual networks (VNets). Manage IP address configuration for Windows Server IaaS virtual machines (VMs). Module 9: File servers and storage management in Windows Server This module covers the core functionality and use cases of file server and storage management technologies in Windows Server. The module discusses how to configure and manage the Windows File Server role, and how to use Storage Spaces and Storage Spaces Direct. This module also covers replication of volumes between servers or clusters using Storage Replica. Lessons for module 9 Manage Windows Server file servers Implement Storage Spaces and Storage Spaces Direct Implement Windows Server Data Deduplication Implement Windows Server iSCSI Implement Windows Server Storage Replica Lab : Implementing storage solutions in Windows Server Implementing Data Deduplication Configuring iSCSI storage Configuring redundant Storage Spaces Implementing Storage Spaces Direct After completing module 9, students will be able to: Configure and manage the Windows Server File Server role. Protect data from drive failures using Storage Spaces. Increase scalability and performance of storage management using Storage Spaces Direct. Optimize disk utilization using Data DeDuplication. Configure high availability for iSCSI. Enable replication of volumes between clusters using Storage Replica. Use Storage Replica to provide resiliency for data hosted on Windows Servers volumes. Module 10: Implementing a hybrid file server infrastructure This module introduces Azure file services and how to configure connectivity to Azure Files. The module also covers how to deploy and implement Azure File Sync to cache Azure file shares on an on-premises Windows Server file server. This module also describes how to manage cloud tiering and how to migrate from DFSR to Azure File Sync. Lessons for module 10 Overview of Azure file services Implementing Azure File Sync Lab : Implementing Azure File Sync Implementing DFS Replication in your on-premises environment Creating and configuring a sync group Replacing DFS Replication with File Sync–based replication Verifying replication and enabling cloud tiering Troubleshooting replication issues After completing module 10, students will be able to: Configure Azure file services. Configure connectivity to Azure file services. Implement Azure File Sync. Deploy Azure File Sync Manage cloud tiering. Migrate from DFSR to Azure File Sync.   [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Virtuelt klasserom 3 timer 6 950 kr
Kurset gir en innføring i digitalisering og hvordan digitalisering påvirker og kan utnyttes til å skape økt vekst og innovasjon. [+]
Digital strategi i styrerommet   * Ca. 3 timer kurs spesialtilpasset for mindre deltakergrupper (1 - 6 deltakere) med mulighet for dialog, spørsmål og avklaringer underveis. Kurset leveres normalt nettbasert - alternativt - som fysisk kurs etter avtale med kursholder, eller i henhold til særskilt annonsering / tilbud. Kurset / Alle våre kan også leveres som et eksklusivt kurs der kun du og foreleser deltar. Ved slik eksklusiv leveranse får du mulighet til personlig gjennomgang med en av våre profesjonell kursholdere og konsulenter innenfor det aktuelle tema. Ved bestilling av eksklusiv / personlig kursdato for deg selv, vil kursholder kontakte deg direkte, og avtale konkret kursdato. **Alle spesialkurs, kan også leveres som bedriftsinterne kurs, kurs for hele styret, hele ledergruppen etc.   Kurset gir en innføring i digitalisering og hvordan digitalisering påvirker og kan utnyttes til å skape økt vekst og innovasjon. Deltagerne får en innføring i et rammeverk for utvikling av en fokusert digital strategi tilpasset virksomheten.   I tillegg vil deltagerne vil bli kjent med nødvendige begreper, anerkjente metoder og strategiske verktøy, og få delta i spennende gruppearbeid. I tillegg ser vi på hvordan arbeid med digitalisering kan organiseres og hva som er de viktigste virkemidlene for å lykkes.    Kurset tar utgangspunktet i internasjonal forskning knyttet til digitalisering, og gir en grundig innføring i de sentrale elementene i en digital strategi som styre og ledelse i virksomhetene bør konsentrere seg om. Kurset avmystifiserer begrepet digitalisering med forenklet terminologi, og gir deltagerne det nødvendige grunnlaget for å kunne delta aktivt i å utvikle fokuserte digitale strategier. I en verden hvor digitaliseringen driver endringstakten stadig raskere, blir retning og et tydelig fremtidsbilde viktigere enn rene langsiktige mål. Samtidig må man ha et felles begrepsapparat, forstå driverne og ofte benytte utradisjonelle virkemidler og nye forretningsmodeller for å lykkes.    Formålet med kurset: Formålet er å gi deltagerne et forenklet rammeverk for å kunne diskutere og sette premisser ved utvikling av en fokusert digital strategi. Videre vil deltagerne få avmystifisert begrepet digitalisering, få en forståelse av hva digitalisering i realiteten betyr for virksomheten og få konkretisert hva man kan gjøre for å utnytte de mulighetene som digitaliseringen gir.   Kursinnhold:  Hvordan kan styret sette premisser gjennom en fokusert digital strategi? Hva er digitalisering egentlig, hva er driverne og hvor fort går det? Hvilke muligheter og trusler gir digitalisering? Hva kreves for å lykkes? Digitalisering vs. IT Digital innovasjon Digital forretningsutvikling Digital transformasjon Digitale forretningsmodeller Strategiprosesser Digital strategi Fremtidsscenario Virkemidler Strategiske partnerskap Organisering og kompetanse   Målgruppe:  Målgruppen er primært styreledere, styremedlemmer, eiere og ledere som er opptatt av prosessene omkring digitalisering og digital strategi i styrerommet.    [-]
Les mer
Virtuelt klasserom 4 dager 23 000 kr
This course prepares students with the background to design and evaluate cybersecurity strategies in the following areas: Zero Trust, Governance Risk Compliance (GRC), se... [+]
. Students will also learn how to design and architect solutions using zero trust principles and specify security requirements for cloud infrastructure in different service models (SaaS, PaaS, IaaS). TARGET AUDIENCE IT professionals with advanced experience and knowledge in a wide range of security engineering areas, including identity and access, platform protection, security operations, securing data, and securing applications. They should also have experience with hybrid and cloud implementations. COURSE OBJECTIVES Design a Zero Trust strategy and architecture Evaluate Governance Risk Compliance (GRC) technical strategies and security operations strategies Design security for infrastructure Design a strategy for data and applications COURSE CONTENT Module 1: Build an overall security strategy and architecture Learn how to build an overall security strategy and architecture. Lessons M1 Introduction Zero Trust overview Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design a security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Understand security for protocols Exercise: Build an overall security strategy and architecture Knowledge check Summary After completing module 1, students will be able to: Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Module 2: Design a security operations strategy Learn how to design a security operations strategy. Lessons M2 Introduction Understand security operations frameworks, processes, and procedures Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, Evaluate security workflows Review security strategies for incident management Evaluate security operations strategy for sharing technical threat intelligence Monitor sources for insights on threats and mitigations After completing module 2, students will be able to: Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments. Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, A Evaluate security workflows. Review security strategies for incident management. Evaluate security operations for technical threat intelligence. Monitor sources for insights on threats and mitigations. Module 3: Design an identity security strategy Learn how to design an identity security strategy. Lessons M3 Introduction Secure access to cloud resources Recommend an identity store for security Recommend secure authentication and security authorization strategies Secure conditional access Design a strategy for role assignment and delegation Define Identity governance for access reviews and entitlement management Design a security strategy for privileged role access to infrastructure Design a security strategy for privileged activities Understand security for protocols After completing module 3, students will be able to: Recommend an identity store for security. Recommend secure authentication and security authorization strategies. Secure conditional access. Design a strategy for role assignment and delegation. Define Identity governance for access reviews and entitlement management. Design a security strategy for privileged role access to infrastructure. Design a security strategy for privileged access. Module 4: Evaluate a regulatory compliance strategy Learn how to evaluate a regulatory compliance strategy. Lessons M4 Introduction Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency Requirements Translate privacy requirements into requirements for security solutions After completing module 4, students will be able to: Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency requirements Translate privacy requirements into requirements for security solutions Module 5: Evaluate security posture and recommend technical strategies to manage risk Learn how to evaluate security posture and recommend technical strategies to manage risk. Lessons M5 Introduction Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks After completing module 5, students will be able to: Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks Module 6: Understand architecture best practices and how they are changing with the Cloud Learn about architecture best practices and how they are changing with the Cloud. Lessons M6 Introduction Plan and implement a security strategy across teams Establish a strategy and process for proactive and continuous evolution of a security strategy Understand network protocols and best practices for network segmentation and traffic filtering After completing module 6, students will be able to: Describe best practices for network segmentation and traffic filtering. Plan and implement a security strategy across teams. Establish a strategy and process for proactive and continuous evaluation of security strategy. Module 7: Design a strategy for securing server and client endpoints Learn how to design a strategy for securing server and client endpoints. Lessons M7 Introduction Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type After completing module 7, students will be able to: Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type Module 8: Design a strategy for securing PaaS, IaaS, and SaaS services Learn how to design a strategy for securing PaaS, IaaS, and SaaS services. Lessons M8 Introduction Specify security baselines for PaaS services Specify security baselines for IaaS services Specify security baselines for SaaS services Specify security requirements for IoT workloads Specify security requirements for data workloads Specify security requirements for web workloads Specify security requirements for storage workloads Specify security requirements for containers Specify security requirements for container orchestration After completing module 8, students will be able to: Specify security baselines for PaaS, SaaS and IaaS services Specify security requirements for IoT, data, storage, and web workloads Specify security requirements for containers and container orchestration Module 9: Specify security requirements for applications Learn how to specify security requirements for applications. Lessons M9 Introduction Understand application threat modeling Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs After completing module 9, students will be able to: Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs Module 10: Design a strategy for securing data Learn how to design a strategy for securing data. Lessons M10 Introduction Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion After completing module 10, students will be able to: Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion [-]
Les mer