IT-kurs
Du har valgt: Tokyo
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Tokyo ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Nettkurs 4 timer 549 kr
Dette kurset er laget for deg som vil lære å bruke Google Analytics 4, og få innsikt i hvordan kundene dine bruker nettstedet eller appen din. Kurset varer i 4 timer og 5... [+]
Ønsker du å mestre Google Analytics 4 for å få dybdeinnsikt i kundeadferden på nettstedet eller appen din? Da er kurset "Google Analytics 4: Komplett", ledet av Espen Faugstad, perfekt for deg. Dette kurset er designet for å gi deg en helhetlig forståelse av Google Analytics 4, slik at du kan jobbe profesjonelt med dette kraftige analyseverktøyet. Kurset starter med grunnleggende om hvordan Google Analytics 4 fungerer og veileder deg gjennom installasjonen på din nettside. Du vil lære å konfigurere Google Analytics for å maksimere dets potensial, administrere brukere, spore nettstedsøk, og mye mer. I tillegg gir kurset deg en detaljert gjennomgang av standardrapporter og utforskninger som er tilgjengelige i Google Analytics 4. Mot slutten av kurset vil du dykke inn i mer avanserte temaer som opprettelse og sporing av egendefinerte hendelser, konverteringssporing, og hvordan du kan utnytte innsikter fra brukerdata for å forbedre dine digitale strategier. Dette kurset er din vei til å bli en ekspert i Google Analytics 4.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Installer Kapittel 3: Konfigurer Kapittel 4: Rapporter Kapittel 5: Utforsk Kapittel 6: Hendelser Kapittel 7: Avansert Kapittel 8: Avslutning   Varighet: 4 timer og 48 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Excel for controllere [+]
Dette kurset er innrettet mot dem som jobber med økonomisk oppfølging i bedriften. Vi går inn på prosessene fra innhenting av data, bearbeidelse av dataene, sammendrag og analyse av dataene, og til sist rapportering av dataene til bedriftens beslutningstagere. Vi bruker en god del tid på Pivot og Power Pivot her, men vi går ikke fullt så langt som i spesialkurset om Pivottabeller. Kurset forutsetter at man er godt kjent i Excel, og vant til å jobbe med litt kompliserte problemstillinger i Excel. Kontroll/gjennomgang av en del sentral funksjonalitet – bl.a. absolutte, relative og blandede referanser. Sammendrag av data fra flere ark i samme eller flere arbeidsbøker, bl.a. gjennomgående summering og tabulering v.hj.a. INDIREKTE-funksjonen. Betingende sammendrag v.hj.a. matriseformler og funksjoner Sentrale funksjoner, bl.a. HVIS, HVISFEIL, FINN.RAD, FINN.KOLONNE, ANTALL.HVIS, etc. Sammendrag av data med Pivottabell Power Pivot Formler Rapportering av data Statiske rapporter Rapporter med interaktivitet, forskjellige teknikker Visualisering av tallene Dashboard Aktuelle teknikker for å lage dashboards Avstemming av to eller flere lister mot hverandre, f.ex. bank Lister – verktøy i Excel som er aktuelle når vi jobber med lister Makroer/VBA – introduksjon til automatisering [-]
Les mer
Nettstudie 11 800 kr
Med utgangspunkt i automasjon i bygg lærere du I denne utdanningen lærer du om grunnleggende programmering i HTML, Python, og JavaScript, mobilapp-utvikling, samt prosjek... [+]
Koding automasjon i bygg Denne fagskole utdanningens innhold tilsvarer 5 studiepoeng og utdanning er på nettet.  Maksimalt antall studieplasser er 25. Utdanningen er praktisk tilrettelagt, slik at du kan anvende teori og kunnskap i praksis. Du vil få mulighet til å jobbe med reelle og aktuelle problemstillinger, og du vil få tilbakemelding fra erfarne fagfolk. Læremateriellet består av video, podkaster, resyme av fagstoff, artikler, forskningsrapporter, foredrag, presentasjon av fagstoff, samt quizer og annet. Læremateriellet du får tilgang til er på en LMS som er under kontinuerlig utvikling og oppdatering. Du får ett års tilgang til læremateriell, etter at utdanningen er ferdig, på Learning Management System (LMS) I denne utdanningen lærer du om: Installere Python på egen PC (Spyder): Veiledning for hvordan du installerer Python og Spyder IDE for å utvikle Python-programmer. Introduksjon til programmering i: HTML: Grunnleggende om HTML-strukturer og webutvikling. Python: Introduksjon til grunnleggende programmeringskonsepter, inkludert: Variabler og Datatyper: Opprettelse og bruk av variabler med ulike datatyper som heltall (integers), desimaltall (floats), strenger (strings), lister (lists), tupler (tuples), og dictionaries (dictionaries). Operatorer: Bruk av matematiske, sammenlignings-, og logiske operatorer for beregninger og verdikomparasjoner. Løkker: Implementering av kontrollstrukturer som if-setninger, for- og while-løkker, samt avvikshantering med try og except for å styre programflyten. Funksjoner: Definisjon og anvendelse av funksjoner for å organisere koden i moduler og forbedre lesbarheten og vedlikeholdbarheten. Input og Output: Håndtering av datainnlesning fra bruker og datavisning til skjermen. Moduler og Biblioteker: Utforsking av innebygde og tredjepartsmoduler for å utvide programmets funksjonalitet. Filstyring: Åpning, lesing, skriving, og lukking av filer. Strukturering av kode: Organisering av kode ved hjelp av funksjoner, klasser, og moduler for bedre lesbarhet og vedlikehold. JavaScript: Grunnleggende programmeringskonsepter for å utvikle interaktive webapplikasjoner. Programmere App til mobil telefon: Introduksjon til å kunne programmere Android-apps. Fra sensor til web: Utvikling av programmer fra grunnen av, fra å programmere Arduino UNO som en Modbus RTU slave til å utvikle en Modbus RTU master i Python. Konfigurasjon av egen PC som webserver (IIS) for å støtte webapplikasjoner. Integrert prosjektarbeid som involverer programmering fra sensor til web, som kombinerer hardware og software for å samle, behandle, og presentere data. Inkluderer API-er (Application Programming Interfaces) og tekniske beskrivelser. Du velger selv prosjektoppgave: Oppgaven kan for eksempel innebære å innhente data via API fra https://www.yr.no/ eller en annen nettressurs. Ved å anvende Modbus for I/O på Arduino, er det mulig å utvikle et system som både overvåker og regulerer energiforbruket ditt. Brukergrensesnittet kan være basert på web, og konfigureres på din egen datamaskin. Denne utdanningen danner et solid fundament for videre læring og anvendelse av disse konseptene i automasjon i bygg. Bedriftsinterne utdanning tilpasset din bedrift Denne utdanningen kan tilbys som en bedriftsintern utdanning. Det faglige innholdet er fastsatt, men den faglige tilnærmingen kan tilpasses den enkelte bedrifts behov og ønsker. Ta kontakt for en prat, så kan vi sammen lage et utdanningsløp som passer for deg og din bedrift. Kontaktpersoner er Hans Gunnar Hansen (tlf. 91101824) og Vidar Luth-Hanssen (tlf. 91373153) [-]
Les mer
Oslo 4 dager 23 900 kr
30 Sep
30 Sep
16 Dec
Vue.js, Vuex & Router Course [+]
Vue.js, Vuex & Router Course [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. [+]
Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform. Learning Objectives This course teaches participants the following skills: Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform Use Cloud SQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform Employ BigQuery and Cloud Datalab to carry out interactive data analysis Train and use a neural network using TensorFlow Employ ML APIs Choose between different data processing products on the Google Cloud Platform Course Outline Module 1: Introducing Google Cloud Platform -Google Platform Fundamentals Overview-Google Cloud Platform Big Data Products Module 2: Compute and Storage Fundamentals -CPUs on demand (Compute Engine)-A global filesystem (Cloud Storage)-CloudShell-Lab: Set up an Ingest-Transform-Publish data processing pipeline Module 3: Data Analytics on the Cloud -Stepping-stones to the cloud-CloudSQL: your SQL database on the cloud-Lab: Importing data into CloudSQL and running queries-Spark on Dataproc-Lab: Machine Learning Recommendations with Spark on Dataproc Module 4: Scaling Data Analysis -Fast random access-Datalab-BigQuery-Lab: Build machine learning dataset Module 5: Machine Learning -Machine Learning with TensorFlow-Lab: Carry out ML with TensorFlow-Pre-built models for common needs-Lab: Employ ML APIs Module 6: Data Processing Architectures -Message-oriented architectures with Pub/Sub-Creating pipelines with Dataflow-Reference architecture for real-time and batch data processing Module 7: Summary -Why GCP?-Where to go from here-Additional Resources [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
Successful completion of this five-day, instructor-led course should enhance the student’s understanding of configuring and managing Palo Alto Networks Next-Generation Fi... [+]
COURSE OVERVIEW The course includes hands-on experience configuring, managing, and monitoring a firewall in a lab environment TARGET AUDIENCE This course is aimed at Security Engineers, Security Administrators, Security Operations Specialists, Security Analysts, and Support Staff. COURSE OBJECTIVES After you complete this course, you will be able to: Configure and manage the essential features of Palo Alto Networks next-generation firewalls Configure and manage Security and NAT policies to enable approved traffic to and from zones Configure and manage Threat Prevention strategies to block traffic from known and unknown IP addresses, domains, and URLs Monitor network traffic using the interactive web interface and firewall reports COURSE CONTENT 1 - Palo Alto Networks Portfolio and Architecture 2 - Configuring Initial Firewall Settings 3 - Managing Firewall Configurations 4 - Managing Firewall Administrator Accounts 5 - Connecting the Firewall to Production Networks with Security Zones 6 - Creating and Managing Security Policy Rules 7 - Creating and Managing NAT Policy Rules 8 - Controlling Application Usage with App-ID 9 - Blocking Known Threats Using Security Profiles 10 - Blocking Inappropriate Web Traffic with URL Filtering 11 - Blocking Unknown Threats with Wildfire 12 - Controlling Access to Network Resources with User-ID 13 - Using Decryption to Block Threats in Encrypted Traffic 14 - Locating Valuable Information Using Logs and Reports 15 - What's Next in Your Training and Certification Journey Supplemental Materials Securing Endpoints with GlobalProtect Providing Firewall Redundancy with High Availability Connecting Remotes Sites using VPNs Blocking Common Attacks Using Zone Protection   FURTHER INFORMATION Level: Introductory Duration: 5 days Format: Lecture and hands-on labs Platform support: Palo Alto Networks next-generation firewalls running PAN-OS® operating system version 11.0     [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Arne Rettedals Hus 3 timer 3 200 kr
15 Oct
OneNote er et program fra Microsoft som gir deg mulighet til å digitalisere dine notater, og på kurset viser vi deg hvordan du jobber med opprettelse og oppbygning av not... [+]
OneNote er et program fra Microsoft som gir deg mulighet til å digitalisere dine notater. Programmet egner seg særlig for deg som har behov for å skrive møtenotater, foredragsnotater og arbeidsnotater. OneNote vil synkronisere dine notater på tvers av dine enheter, og kan benyttes på din PC, din smarttelefon eller nettbrett. Du kan bygge inn tekst og filer fra Outlook, Word, Excel og PowerPoint, samt film- og lydfiler. Har du oversikten over notater etter at møter er over? Føler du at de papirbaserte notatene over tid blir uoversiktlige og lite tilgjengelige. Du kan jobbe raskere, smartere og bedre ved å ta i bruk OneNote. I dine digitale notater i OneNote kan du inkludere tekst, bilder, lenker til filer og websider, lyd og film. Du kan ta notater fra din smarttelefon, ditt nettbrett eller din PC; alt etter hva du har tilgjengelig. Systemet vil synkronisere notatene på tvers av dine enheter. OneNote er en del av Microsoft Office og er tilgjengelig gratis for alle.  Kurset kan spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler. Deltakere må ha med egen datamaskin med relevant programvare. 6 gode grunner til å delta Du vil se hvor enkelt det er å ta raske notater Lær hvordan du finner igjen notater raskt og effektivt Du vil kunne koble notater til oppgaver i Outlook Lær å holde møtenotater koblet til avtaler og møter i Outlook Få en innføring i hvordan flere kan jobbe samtidig med notater Lær hvordan OneNote kobler lyd/videoopptak med notater Synkroniser dine notater mellom dine enheter (PC, mobil, nettbrett) Forkunnskap: Erfaring i bruk av Microsoft Office. Varighet:3 timer Pris:3200 kroner Ansatte ved UiS har egne betalingsbetingelser. [-]
Les mer
2 dager 12 900 kr
Ønsker du å jobbe med ulike tegninger i Visio, men føler du ikke mestrer programmet? Vil du i tillegg kunne lage egne maler for å jobbe mer effektivt? Da er ”Visio ... [+]
Ønsker du å jobbe med ulike tegninger i Visio, men føler du ikke mestrer programmet? Vil du i tillegg kunne lage egne maler for å jobbe mer effektivt? Da er ”Visio Grunnleggende” kurset for deg! Kurset kan også spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler.   Kursinnhold:   Dag 1    Hva er Visio? Få oversikt. Bli kjent med programvinduet og hvordan du kan tilpasse det etter dine behov. Mal. Hvordan er en mal bygd opp og hvordan jobbe med en tegning? Formatering. Lær å formatere og hva formateringsbegrepet betyr. Sjablonger og figurer. Hva er sjablonger og figurer?   Å jobbe effektivt med Visio Bygge opp en tegning. Lær å bygge opp en tegning fra bunnen av. Hurtigtaster. Effektiv bruk av tastatur og mus. Formatering. Bruk formatering for å gjøre tegningene oversiktlige og informasjonen mest mulig tilgjengelig. Ark. Lær å jobbe med flere ark, navngi dem, slette dem, bruke bakgrunner etc. Praktisk oppgaveløsing. Jobb med skreddersydde oppgaver innenfor dagens temaer. Andre Office-programmer. Lær å bruke Visio-tegninger i andre Office-programmer.   Flytskjema og organisasjonskart Koblinger. Lær å koble figurer på en effektiv måte. Oppsett. Hvordan sørge for at figurene står plassert på en nøyaktig og oversiktlig måte? Navigasjon. Bygge opp praktisk navigasjon mellom sidene i en større tegning.   Dag 2    Nettverksdiagram Figurdata. Knytt praktisk informasjon til figurene i tegningen. Rapporter. Hvordan hente ut rapporter fra en tegning?   Prosjektplaner Tidslinje. Illustrere faser i et prosjekt på en oversiktlig måte. Gantt-diagram. Vise prosjektinformasjon på en mer detaljert måte. Utskrift. Få oversikt over de vanligste problemstillingene ved utskrift.   Egne maler Maler. Hva er maler, deres styrke og hvordan kan jeg utnytte dem best mulig i mitt arbeid? Sjablonger. Bygge opp en egen samling med de figurene du skal bruke. Figurer. Lær å lage egne tilpassede figurer. Praktisk oppgaveløsing. Jobb med skreddersydde oppgaver innenfor dagens temaer.   4 gode grunner til å velge KnowledgeGroup 1. Best practice kursinnhold 2. Markedets beste instruktører 3. Små kursgrupper 4. Kvalitets- og startgaranti   [-]
Les mer
Virtuelt klasserom 3 timer 3 400 kr
Å lage gode skjemaer er ikke lett. Både teknisk, pedagogisk og innholdsmessig må skjemaene arbeides med, slik at det blir forståelig for alle, og ikke minst enkelt å fyll... [+]
Kurset er rettet mot designere og utviklere. Vi er blant annet innom: Forståelige skjemaobjekter Beskrivelser og instruksjoner Obligatoriske felt Lesbarhet Vær konsekvent Grupperinger Viktige skjema Store, komplekse skjemaer Validering og feilhåndtering [-]
Les mer
Virtuelt klasserom 4 dager 23 000 kr
This course prepares students with the background to design and evaluate cybersecurity strategies in the following areas: Zero Trust, Governance Risk Compliance (GRC), se... [+]
. Students will also learn how to design and architect solutions using zero trust principles and specify security requirements for cloud infrastructure in different service models (SaaS, PaaS, IaaS). TARGET AUDIENCE IT professionals with advanced experience and knowledge in a wide range of security engineering areas, including identity and access, platform protection, security operations, securing data, and securing applications. They should also have experience with hybrid and cloud implementations. COURSE OBJECTIVES Design a Zero Trust strategy and architecture Evaluate Governance Risk Compliance (GRC) technical strategies and security operations strategies Design security for infrastructure Design a strategy for data and applications COURSE CONTENT Module 1: Build an overall security strategy and architecture Learn how to build an overall security strategy and architecture. Lessons M1 Introduction Zero Trust overview Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design a security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Understand security for protocols Exercise: Build an overall security strategy and architecture Knowledge check Summary After completing module 1, students will be able to: Develop Integration points in an architecture Develop security requirements based on business goals Translate security requirements into technical capabilities Design security for a resiliency strategy Design security strategy for hybrid and multi-tenant environments Design technical and governance strategies for traffic filtering and segmentation Module 2: Design a security operations strategy Learn how to design a security operations strategy. Lessons M2 Introduction Understand security operations frameworks, processes, and procedures Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, Evaluate security workflows Review security strategies for incident management Evaluate security operations strategy for sharing technical threat intelligence Monitor sources for insights on threats and mitigations After completing module 2, students will be able to: Design a logging and auditing security strategy Develop security operations for hybrid and multi-cloud environments. Design a strategy for Security Information and Event Management (SIEM) and Security Orchestration, A Evaluate security workflows. Review security strategies for incident management. Evaluate security operations for technical threat intelligence. Monitor sources for insights on threats and mitigations. Module 3: Design an identity security strategy Learn how to design an identity security strategy. Lessons M3 Introduction Secure access to cloud resources Recommend an identity store for security Recommend secure authentication and security authorization strategies Secure conditional access Design a strategy for role assignment and delegation Define Identity governance for access reviews and entitlement management Design a security strategy for privileged role access to infrastructure Design a security strategy for privileged activities Understand security for protocols After completing module 3, students will be able to: Recommend an identity store for security. Recommend secure authentication and security authorization strategies. Secure conditional access. Design a strategy for role assignment and delegation. Define Identity governance for access reviews and entitlement management. Design a security strategy for privileged role access to infrastructure. Design a security strategy for privileged access. Module 4: Evaluate a regulatory compliance strategy Learn how to evaluate a regulatory compliance strategy. Lessons M4 Introduction Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency Requirements Translate privacy requirements into requirements for security solutions After completing module 4, students will be able to: Interpret compliance requirements and their technical capabilities Evaluate infrastructure compliance by using Microsoft Defender for Cloud Interpret compliance scores and recommend actions to resolve issues or improve security Design and validate implementation of Azure Policy Design for data residency requirements Translate privacy requirements into requirements for security solutions Module 5: Evaluate security posture and recommend technical strategies to manage risk Learn how to evaluate security posture and recommend technical strategies to manage risk. Lessons M5 Introduction Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks After completing module 5, students will be able to: Evaluate security postures by using benchmarks Evaluate security postures by using Microsoft Defender for Cloud Evaluate security postures by using Secure Scores Evaluate security hygiene of Cloud Workloads Design security for an Azure Landing Zone Interpret technical threat intelligence and recommend risk mitigations Recommend security capabilities or controls to mitigate identified risks Module 6: Understand architecture best practices and how they are changing with the Cloud Learn about architecture best practices and how they are changing with the Cloud. Lessons M6 Introduction Plan and implement a security strategy across teams Establish a strategy and process for proactive and continuous evolution of a security strategy Understand network protocols and best practices for network segmentation and traffic filtering After completing module 6, students will be able to: Describe best practices for network segmentation and traffic filtering. Plan and implement a security strategy across teams. Establish a strategy and process for proactive and continuous evaluation of security strategy. Module 7: Design a strategy for securing server and client endpoints Learn how to design a strategy for securing server and client endpoints. Lessons M7 Introduction Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type After completing module 7, students will be able to: Specify security baselines for server and client endpoints Specify security requirements for servers Specify security requirements for mobile devices and clients Specify requirements for securing Active Directory Domain Services Design a strategy to manage secrets, keys, and certificates Design a strategy for secure remote access Understand security operations frameworks, processes, and procedures Understand deep forensics procedures by resource type Module 8: Design a strategy for securing PaaS, IaaS, and SaaS services Learn how to design a strategy for securing PaaS, IaaS, and SaaS services. Lessons M8 Introduction Specify security baselines for PaaS services Specify security baselines for IaaS services Specify security baselines for SaaS services Specify security requirements for IoT workloads Specify security requirements for data workloads Specify security requirements for web workloads Specify security requirements for storage workloads Specify security requirements for containers Specify security requirements for container orchestration After completing module 8, students will be able to: Specify security baselines for PaaS, SaaS and IaaS services Specify security requirements for IoT, data, storage, and web workloads Specify security requirements for containers and container orchestration Module 9: Specify security requirements for applications Learn how to specify security requirements for applications. Lessons M9 Introduction Understand application threat modeling Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs After completing module 9, students will be able to: Specify priorities for mitigating threats to applications Specify a security standard for onboarding a new application Specify a security strategy for applications and APIs Module 10: Design a strategy for securing data Learn how to design a strategy for securing data. Lessons M10 Introduction Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion After completing module 10, students will be able to: Prioritize mitigating threats to data Design a strategy to identify and protect sensitive data Specify an encryption standard for data at rest and in motion [-]
Les mer
2 dager 24 000 kr
28 Aug
23 Oct
22 Dec
SDWFND: Cisco SD WAN Operation and Deployment [+]
SDWFND: Cisco SD WAN Operation and Deployment [-]
Les mer
Klasserom + nettkurs 5 dager 31 000 kr
Expand your Citrix networking knowledge and skills by enrolling in this five-day course. It covers Citrix ADC essentials, including secure load balancing, high availabili... [+]
COURSE OVERVIEW  You will learn to deliver secure remote access to apps and desktops integrating Citrix Virtual Apps and Citrix Desktops with Citrix Gateway.  This course includes an exam. TARGET AUDIENCE Built for IT Professionals working with Citrix ADC and Gateway, with little or no previous Citrix networking experience. Potential students include administrators, engineers, and architects interested in learning how to deploy or manage Citrix ADC or Citrix Gateway environments. COURSE OBJECTIVES  Identify the functionality and capabilities of Citrix ADC and Citrix Gateway Explain basic Citrix ADC and Gateway network architecture Identify the steps and components to secure Citrix ADC Configure Authentication, Authorization, and Auditing Integrate Citrix Gateway with Citrix Virtual Apps, Citrix Virtual Desktops and other Citrix components COURSE CONTENT Module 1: Getting Started Introduction to Citrix ADC Feature and Platform Overview Deployment Options Architectural Overview Setup and Management Module 2: Basic Networking Networking Topology Citrix ADC Components Routing Access Control Lists Module 3: ADC Platforms Citrix ADC MPX Citrix ADC VPX Citrix ADC CPX Citrix ADC SDX Citrix ADC BLX Module 4: High Availability Citrix ADC High Availability High Availability Configuration Managing High Availability In Service Software Upgrade Troubleshooting High Availability Module 5: Load balancing Load Balancing Overview Load Balancing Methods and Monitors Load Balancing Traffic Types Load Balancing Protection Priority Load Balancing Load Balancing Troubleshooting Module 6: SSL Offloading SSL Overview SSL Configuration SSL Offload Troubleshooting SSL Offload SSL Vulnerabilities and Protections Module 7: Security Authentication, Authorization, and Auditing Configuring External Authentication Admin Partitions Module 8: Monitoring and Troubleshooting Citrix ADC Logging Monitoring with SNMP Reporting and Diagnostics AppFlow Functions Citrix Application Delivery Management Troubleshooting Module 9: Citrix Gateway Introduction to Citrix Gateway Advantages and Utilities of Citrix Gateway Citrix Gateway Configuration Common Deployments Module 10: AppExpert Expressions Introduction to AppExpert Policies Default Policies Explore Citrix ADC Gateway Policies Policy Bind Points Using AppExpert with Citrix Gateway Module 11: Authentication, Authorization, and Secure Web Gateway Authentication and Authorization Multi-Factor Authentication nFactor Visualizer SAML authentication Module 12: Managing Client Connections Introduction to Client Connections Session Policies and Profiles Pre and Post Authentication Policies Citrix Gateway Deployment Options Managing User Sessions Module 13: Integration for Citrix Virtual Apps and Desktops Virtual Apps and Desktop Integration Citrix Gateway Integration Citrix Gateway WebFront ICA Proxy Clientless Access and Workspace App Access Fallback SmartControl and SmartAccess for ICA Module 14: Configuring Citrix Gateway Working with Apps on Citrix Gateway RDP Proxy Portal Themes and EULA [-]
Les mer