IT-kurs
Du har valgt: Trollåsen
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Trollåsen ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 2 timer 3 120 kr
Bluebeam Revu er en komplett PDF-løsning, som lar deg opprette og redigere PDF-dokumenter og tegninger. Videre kan du markere opp og gjøre mengdeuttak fra tegningene, sam... [+]
Sammenligne tegninger, også i batch Hvordan standardisere designgjennomgangen? Opprette tilpassede markeringsverktøy i Tool Chest Bruk av Markeringslisten for sporing, kommentering og status på markeringer Samhandling i sanntid mellom forskjellige aktører under designgjennomgangen i Studio Sessions [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Dagens byggebransje fokuserer på BIM. Autodesk Revit Architecture er det ledende systemet i Norge for arkitekter innen BIM prosjektering. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Revit Architecture Basis I Her er et utvalg av temaene du vil lære på kurset: Introduksjon til BIM Modellering av 3D-bygningsmodell i flere detaljeringsgrader (informasjonsnivåer) Samarbeid med andre fagmodeller Generering av planer, snitt, fasader, detaljer og perspektiver Skjemaer og mengdeuttrekk Oppsetning til print A Anvendelse av relevante NTItools Kurset gir deg innblikk i bruken av BIM-arbeidsmetoder med Revit som hovedverktøy. Det bygges opp en full, parametrisk 3D-modell, hvor de grunnleggende funksjonene i Revit benyttes. DU vil få en bred forståelse av både prinsipper og funksjoner i Revit og skal bli i stand til å øke detaljeringen av prosjektet ytterligere.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Nettkurs 3 timer 549 kr
God formatering handler ikke bare om å få et regneark til å se pent ut, det handler like mye om å kommunisere effektivt. Et dårlig formatert regneark vil gjøre det vanske... [+]
God formatering i Microsoft Excel handler ikke bare om å få et regneark til å se pent ut; det handler like mye om å kommunisere effektivt. Et dårlig formatert regneark kan gjøre det vanskelig å lese og forstå innholdet. Derimot vil et godt formatert regneark gjøre det enklere å absorbere informasjonen som presenteres. Dette kurset, ledet av Espen Faugstad, vil gi deg ferdighetene du trenger for å formatere data i Microsoft Excel på avansert nivå. Du vil lære hvordan du gjør regnearket mer leselig, forståelig og effektivt. Emner inkluderer formatering av tekstverdier og tallverdier, opprettelse av egendefinerte formateringsregler, tilpasning av rader, kolonner og celler, formatering av tabeller, diagrammer og bilder, og mye mer. Kurset er delt inn i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Skrift Kapittel 3: Justering Kapittel 4: Tall Kapittel 5: Stiler Kapittel 6: Celler Kapittel 7: Tabell Kapittel 8: Diagrammer Kapittel 9: Bilder Kapittel 10: Avslutning Etter å ha fullført kurset, vil du kunne bruke avansert formatering i Excel for å forbedre presentasjonen og lesbarheten av dine regneark, noe som er uvurderlig for effektiv kommunikasjon og dataanalyse.   Varighet: 2 timer og 27 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo Trondheim Og 1 annet sted 3 dager 21 900 kr
20 Aug
27 Aug
27 Aug
TOGAF® EA Training Practitioner [+]
TOGAF® EA Training Practitioner [-]
Les mer
Virtuelt eller personlig 2 dager 9 250 kr
Lær å bruke egenutviklede scripts direkte i BIM-modellen både i forhold til arbeidet med geometri og BIM-data. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Dynamo for Revit Her er et utvalg av temaene du vil lære på kurset: Intro til brukerflate og grunnleggende funksjoner Dynamo – Revit-interaksjon Parametrisk/Regelbasert Design Geometri i Dynamo Plassering av Revit-elementer Datauttrekk Opprettelse av Analytisk modell Skrive i Revit-parametre/nummerering Tilpasning av Revit-elementer Import og behandling av ekstern geometri Kjenner du til Grasshopper for Rhino og ønsker å komme videre med komplekse geometrier? I så fall er Dynamo en mulighet. Her kan regelbasert design settes opp med direkte integrasjon til Revit. Med Dynamo for Revit åpnes en verden med en hittil usett parametrisk tilgang til prosjektene. Med Dynamo som visuelt programmeringsverktøy kobles egne algoritmer sammen med Revits parametriske database, uansett om fokuset er formgivning, designoptimering, fabrikasjon eller automatisering. Dette, sammen med toveiskommunikasjonen mellom Dynamo og Revit, gjør kombinasjonen både sterk og unik.   Tilpassete kurs for bedrifter Vi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Gir en oversikt over grunnleggende objektorientert programdesign og Java-programmering. Begreper innen objektorientering: klasser, objekter, innkapsling mm. Java-syntaks:... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: Et utvalg (6) av øvingsoppgavene må være godkjent for å få gå opp til eksamen. Det vil settes nærmere krav til utvalget, - opplysninger om dette gis ved kursstart. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 4 timer. Ansvarlig: Vuokko-Helena Caseiro Eksamensdato: 17.12.13 / 20.05.14         Læremål: Etter å ha gjennomført emnet Programmering i Java skal kandidaten ha følgende samlede læringsutbytter: KUNNSKAPER:Kandidaten:- kan forklare hva et program er- kjenner til enkle prinsipper innen objektorientert programmering- kan forklare hvorfor brukerkommunikasjon og logikk til et program knyttet til det problemet som skal løses, bør legges til ulike klasser FERDIGHETER:Kandidaten:- kan sette opp programmiljø for å utvikle og kjøre Java-program på egen PC- kan lage strukturert og oversiktlig programkode- kan beskrive klasser og kontrollstrukturer ved hjelp av enkle klassediagram og aktivitetsdiagram- kan, med noe hjelp, anvende klasser fra Java API'et GENERELL KOMPETANSEKandidaten:- kan anvende objektorientert tankegang til å analysere og løse enkle problemer Innhold:Gir en oversikt over grunnleggende objektorientert programdesign og Java-programmering. Begreper innen objektorientering: klasser, objekter, innkapsling mm. Java-syntaks: Datatyper, betingelser, valg, løkker, uttrykk. Innlesing og utskrift. Tabeller.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Programmering i Java 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Nettkurs 3 timer 549 kr
Dette nettkurset er perfekt for deg som allerede har noen grunnleggende ferdigheter i Python og ønsker å lære objektorientert programmering (OOP). Med OOP vil du kunne re... [+]
Dette nettkurset fokuserer på objektorientert programmering (OOP) i Python og er ideelt for de som allerede har grunnleggende ferdigheter i Python og ønsker å utvide sine kunnskaper. OOP gir deg muligheten til å skrive kode som er mer strukturert, gjenbrukbar og enklere å vedlikeholde. Kurset, ledet av erfaren systemutvikler og instruktør Magnus Kvendseth Øye, vil veilede deg gjennom nøkkelkonsepter innen OOP i Python. I løpet av kurset vil du lære å se på koden din som en samling av dynamiske objekter som samhandler med hverandre. Du vil utforske følgende emner: Kapittel 1: Introduksjon Kapittel 2: Klasser og egenskaper Kapittel 3: Metoder Kapittel 4: Representasjon Kapittel 5: Arv Kapittel 6: Prosjekt Kapittel 7: Avslutning Med Magnus Kvendseth Øye som din veileder, vil du få en solid forståelse av hvordan du kan bruke OOP-prinsipper i Python for å skape ren, effektiv og strukturert kode. Dette kurset gir deg muligheten til å ta dine Python-ferdigheter til neste nivå.   Varighet: 3 timer og 8 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
4 dager 23 000 kr
This course teaches Azure administrators how to plan, deliver, and manage virtual desktop experiences and remote apps, for any device, on Azure. [+]
 Students will learn through a mix of demonstrations and hands-on lab experiences deploying virtual desktop experiences and apps on Windows Virtual Desktop and optimizing them to run in multi-session virtual environments.Students for AZ-140: Configuring and Operating Windows Virtual Desktop on Microsoft Azure are interested in delivering applications on Windows Virtual Desktop and optimizing them to run in multi-session virtual environments. As a Windows Virtual Desktop administrator, you will closely with the Azure Administrators and Architects, along with Microsoft 365 Administrators. Windows Virtual Desktop administrator responsibilities include planning, deploying, packaging, updating, and maintaining the Azure Windows Virtual Desktop infrastructure. They also create session host images, implement and manage FSLogix, monitor Windows Virtual Desktop performance, and automate Windows Virtual Desktop management tasks. COURSE OBJECTIVES   Select an appropriate licensing model for Windows Virtual Desktop Implement networking for Windows Virtual Desktop Manage Windows Virtual Desktop session hosts by using Azure Bastion Configure storage for FSLogix components Create and manage session host images Implement Azure roles and role-based access control (RBAC) for Windows Virtual Desktop Configure user Windows Virtual Desktop experience settings Install and configure apps on a session host Implement business continuity and disaster recovery Monitor and manage Windows Virtual Desktop performance     COURSE CONTENT Module 1: Plan a Windows Virtual Desktop Architecture In this module, you will learn how to assess existing physical and virtual desktop environments, plan and configure name resolution for Active Directory (AD) and Azure Active Directory Domain Services (Azure AD DS), and plan for Windows Virtual Desktop client deployments. LESSONS M1 Windows Virtual Desktop Architecture Design the WVD architecture Design for user identities and profiles LAB: PREPARE FOR DEPLOYMENT OF AZURE WINDOWS VIRTUAL DESKTOP (AZURE AD DS) LAB: PREPARE FOR DEPLOYMENT OF AZURE WINDOWS VIRTUAL DESKTOP (AD DS) After completing module 1, students will be able to: Understand Windows Virtual Desktop Components Understand personal and pooled desktops Recommend an operating system for a WVD implementation Plan a host pools architecture Module 2: Implement a WVD Infrastructure In this module, you will learn how to manage connectivity to the internet and on-premises networks, create a host pool by using the Azure portal, deploy host pools and hosts by using Azure Resource Manager templates, apply OS and application updates to a running WVD host, and create a master image. LESSONS M2 Implement and manage networking for WVD Implement and manage storage for WVD Create and configure host pools and session hosts Create and manage session host image LAB: CREATE AND CONFIGURE HOST POOLS AND SESSION HOSTS (AZURE AD DS) LAB: DEPLOY HOST POOLS AND SESSION HOSTS BY USING THE AZURE PORTAL (AD DS) LAB: IMPLEMENT AND MANAGE STORAGE FOR WVD (AZURE AD DS) LAB: DEPLOY HOST POOLS AND HOSTS BY USING AZURE RESOURCE MANAGER TEMPLATES LAB: DEPLOY AND MANAGE HOST POOLS AND HOSTS BY USING POWERSHELL After completing module 2, students will be able to: Implement Azure virtual network connectivity Manage connectivity to the internet and on-premises networks Understanding Windows Virtual Desktop network connectivity Configure WVD session hosts using Azure Bastion Configure storage for FSLogix components Configure disks and file shares Modify a session host image Create and use a Shared Image Gallery (SIG) Module 3: Manage Access and Security In this module, you will learn how to plan and implement Azure roles and RBAC for WVD, implement Conditional Access policies for connections, plan and implement MFA, and manage security by using Azure Security Center. LESSONS M3 Manage access Manage security LAB: CONFIGURE CONDITIONAL ACCESS POLICIES FOR CONNECTIONS TO WVD (AD DS) After completing module 3, students will be able to: Manage local roles, groups and rights assignment on WVD session hosts. Configure user restrictions by using AD group policies and Azure AD policies Understand Conditional Access policy components Prepare for Azure Active Directory (Azure AD)-based Conditional Access for Windows Virtual Desktop Implement Azure AD-based Conditional Access for Windows Virtual Desktop Module 4: Manage User Environments and Apps In this module, you will learn how to plan for FSLogix, install FSLogix, configure Cloud Cache, deploy an application as a RemoteApp, and implement and manage OneDrive for Business for a multi-session environment. LESSONS M4 Implement and manage FSLogix Configure user experience settings Install and configure apps on a session host LAB: WINDOWS VIRTUAL DESKTOP PROFILE MANAGEMENT (AZURE AD DS) LAB: WINDOWS VIRTUAL DESKTOP PROFILE MANAGEMENT (AD DS) LAB: WINDOWS VIRTUAL DESKTOP APPLICATION PACKAGING (AD DS) After completing module 4, students will be able to: Configure Profile Containers Configure Azure Files to store profile containers for WVD in an AAD DS environment Implement FSLogix based profiles for Windows Virtual Desktop in Azure AD DS environment Implement FSLogix based profiles for Windows Virtual Desktop Prepare for and create MSIX app packages Implement MSIX app attach container for Windows Virtual Desktop in AD DS environmen Module 5: Monitor and maintain a WVD infrastructure In this module, you will learn how to plan and implement a disaster recovery plan for WVD, configure automation for WVD, implement autoscaling in host pools, and optimize session host capacity and performance. LESSONS M5 Plan and implement business continuity and disaster recovery Automate WVD management tasks Monitor and manage performance and health LAB: IMPLEMENT AUTOSCALING IN HOST POOLS (AD DS) After completing module 5, students will be able to: Plan and implement a disaster recovery plan for WVD Configure automation for WVD Monitor WVD by using Azure Monitor Customize Azure Workbooks for WVD monitoring Configure autoscaling of Windows Virtual Desktop session hosts Verify autoscaling of Windows Virtual Desktop session host [-]
Les mer
2 dager 24 000 kr
28 Aug
23 Oct
22 Dec
SDWFND: Cisco SD WAN Operation and Deployment [+]
SDWFND: Cisco SD WAN Operation and Deployment [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course teaches Solutions Architects how to translate business requirements into secure, scalable, and reliable solutions. Lessons include virtualization, automation,... [+]
Agenda Module 1: Implement VMs for Windows and Linux -Select Virtual Machine Size-Configure High Availability-Implement Azure Dedicated Hosts-Deploy and Configure Scale Sets-Configure Azure Disk Encryption Module 2: Automate Deployment and Configuration of Resources -Azure Resource Manager Templates-Save a Template for a VM-Evaluate Location of New Resources-Configure a Virtual Hard Disk Template-Deploy from a Template-Create and Execute an Automation Runbook Module 3: Implement Virtual Networking -Virtual Network Peering-Implement VNet Peering Module 4: Implement Load Balancing and Network Security -Implement Azure Load Balancer-Implement an Application Gateway-Understand Web Application Firewall-Implement Azure Firewall-Implement Azure Front Door-Implementing Azure Traffice Manager-Implement Network Security Groups and Application Security Grou-Implement Azure Bastion Module 5: Implement Storage Accounts -Storage Accounts-Blob Storage-Storage Security-Managing Storage-Accessing Blobs and Queues using AAD-Configure Azure Storage Firewalls and Virtual Networks Module 6: Implement Azure Active Directory -Overview of Azure Active Directory-Users and Groups-Domains and Custom Domains-Azure AD Identity Protection-Implement Conditional Access-Configure Fraud Alerts for MFA-Implement Bypass Options-Configure Trusted IPs-Configure Guest Users in Azure AD-Manage Multiple Directori Module 7: Implement and Manage Azure Governance -Create Management Groups, Subscriptions, and Resource Groups-Overview of Role-Based Access Control (RBAC)-Role-Based Access Control (RBAC) Roles-Azure AD Access Reviews-Implement and Configure an Azure Policy-Azure Blueprints Module 8: Implement and Manage Hybrid Identities -Install and Configure Azure AD Connect-Configure Password Sync and Password Writeback-Configure Azure AD Connect Health Module 9: Manage Workloads in Azure -Migrate Workloads using Azure Migrate-VMware - Agentless Migration-VMware - Agent-Based Migration-Implement Azure Backup-Azure to Azure Site Recovery-Implement Azure Update Management Module 10: Implement Cloud Infrastructure Monitoring -Azure Infrastructure Security Monitoring-Azure Monitor-Azure Workbooks-Azure Alerts-Log Analytics-Network Watcher-Azure Service Health-Monitor Azure Costs-Azure Application Insights-Unified Monitoring in Azure Module 11: Manage Security for Applications -Azure Key Vault-Azure Managed Identity Module 12: Implement an Application Infrastructure -Create and Configure Azure App Service-Create an App Service Web App for Containers-Create and Configure an App Service Plan-Configure Networking for an App Service-Create and Manage Deployment Slots-Implement Logic Apps-Implement Azure Functions Module 13: Implement Container-Based Applications -Azure Container Instances-Configure Azure Kubernetes Service Module 14: Implement NoSQL Databases -Configure Storage Account Tables-Select Appropriate CosmosDB APIs Module 15: Implement Azure SQL Databases -Configure Azure SQL Database Settings-Implement Azure SQL Database Managed Instances-High-Availability and Azure SQL Database [-]
Les mer
5 dager 20 000 kr
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [+]
Machine Learning and Data Science in R with Microsoft SQL Server - with Rafal Lukawiecki [-]
Les mer