IT-kurs
Oppland
Du har valgt: Vågå
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Vågå ) i IT-kurs
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettkurs 12 måneder 11 500 kr
ITIL® er det mest utbredte og anerkjente rammeverket for IT Service Management (ITSM) i verden, og ITIL® 4 Foundation er et introduksjonskurs til rammeverket. [+]
ITIL® 4 Foundation-kurset er en introduksjon til ITIL® 4. Kurset lar kandidater se på IT-tjenestestyring gjennom en ende-til-ende driftsmodell, som inkluderer oppretting, levering og kontinuerlig forbedring av IT-relaterte produkter og tjenester. E-læringskurset inneholder 12 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på AXELOS sine websider. Inkluderer: Tilgang til ITIL® 4 Foundation e-læring (engelsk) i 12 måneder. ITIL® Foundation online voucher til sertifiseringstest + digital ITIL Foundation bok Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. Sertifiseringen består av: 40 spørsmål Multiple Choice 60 minutter + 15 minutter til rådighet dersom du ikke har engelsk som morsmål For å bestå må du ha minimum 26 riktige (65%) Ingen hjelpemidler tillatt ITIL®/PRINCE2®/MSP®/MoP® are registered trademarks of AXELOS Limited, used under permission of AXELOS Limited. All rights reserved. [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Virtuelt klasserom 3 timer 2 500 kr
15 Sep
27 Oct
08 Dec
Analyserer du store datamengder? Gjør du samme import hver dag/uke/måned? Importerer du data til Excel som ikke alltid har rett format? Har du lurt på hvordan det nye ver... [+]
Kursinnhold Import av .csv Import av tekstfiler (.txt) Import fra internett Transformering av data Rette opp feil Lage beregnede kolonner Regelmessig import Analyse av store datamengder   Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder.   [-]
Les mer
Oslo 4 dager 22 500 kr
29 Sep
29 Sep
24 Nov
AZ-140: Configuring and Operating Microsoft Azure Virtual Desktop [+]
AZ-140: Configuring and Operating Microsoft Azure Virtual Desktop [-]
Les mer
Oslo 5 dager 26 900 kr
24 Nov
24 Nov
Java SE Advanced Techniques (Course II for exam 1Z0-819) [+]
Java SE Advanced Techniques (Course II for exam 1Z0-819) [-]
Les mer
Oslo 2 dager 16 900 kr
25 Sep
25 Sep
18 Dec
htWeb Security for Developers [+]
httpWeb Security for Developers [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Automatisering og sikring ved hjelp av System Center Cooperation Manager 2012 (SCCM 2012) - Applikasjonsutrulling - Operativ System utrulling - Klient tilstands-monitorer... [+]
Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Windows server 2008/2012 - god kjennskap om Windows server Innleveringer: Øvinger: 8 av må være godkjent. Personlig veileder: ja Vurderingsform: Eksamen blir arrangert som 2 dagers hjemmeeksamen (start kl 09.00 og innlevering kl 15.00 dagen etter). Hver student får tildelt et virtuelt område. Det skal også leveres en skriftelig begrunnelse for de valg som er foretatt. Hjemmeeksamen, individuell, 2 dager, 0 Ansvarlig: Stein Meisingseth Eksamensdato: 10.12.13 / 13.05.14         Læremål: KUNNSKAPER:Kandidaten:- har innsikt i drift av nettverk basert på Windows Server, programvaredistribusjon og kjenner til hvilke verktøy som kan brukes for administrasjon av virtuelle maskiner og nettverk- kan forklare systemer som kan benyttes til overvåkning og vedlikehold FERDIGHETER:Kandidaten kan:- installere og konfigurere System Center Configuration Manager 2012- automatisere manuelle operasjoner- sikre, oppdatere og overvåke IT-systemer GENERELL KOMPETANSE:Kandidaten har:- perspektiv og kompetanse i å velge riktige og tilpassete driftsløsninger- kompetanse i å formidle driftsterminologi, både muntlig og skriftlig Innhold:- Automatisering og sikring ved hjelp av System Center Cooperation Manager 2012 (SCCM 2012) - Applikasjonsutrulling - Operativ System utrulling - Klient tilstands-monitorering - Programvare oppdateringer - Sikkerhetsbeskyttelse vha Endpoint ProtectionLes mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Microsoft System Center i overvåkning og drift 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
1 dag 6 900 kr
Kom i Gang med Power BI Service [+]
Kom i gang med Power BI Service [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
1 dag 9 900 kr
Confluence Essentials (server) [+]
Confluence Essentials (server) [-]
Les mer
Oslo 1 dag 7 500 kr
15 Aug
15 Aug
17 Oct
Achieve More med MS Outlook (tidl. FTG) [+]
Achieve More med MS Outlook (tidl. FTG) [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Installering og bruk av valgt databaseverktøy (MySQL). Flerbrukerproblematikk og databaseadministrasjon (DBA) i SQL. Bruk av SQL og innebygd funksjonalitet i databaseverk... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: IINI1003 Databaser eller tilsvarende forhåndskunnskaper Innleveringer: Tilsvarende 8 obligatoriske øvinger må være godkjent før endelig karakter settes. Personlig veileder: ja Vurderingsform: Individuell netteksamen, 2 timer. Ansvarlig: Tore Mallaug Eksamensdato: 13.12.13 / 16.05.14         Læremål: KUNNSKAPERKandidaten:- kjenner sentrale begreper innen flerbrukerproblematikk og databaseadministrasjon, og kan gjøre rede for disse- forstår hvordan innebygd funksjonalitet i relasjonsdatabasesystem kan utnyttes i en klient/tjener-arkitektur- vet hvordan ulike typer data kan lagres og representeres i et databasesystem; tekst, XML og temporale data.- kan gjøre rede for hvordan NoSQL-løsninger er et alternativ til relasjonsdatabaser i Web-løsninger FERDIGHETERKandidaten:- kan administrere en flerbrukerdatabase med SQL-kommandoer i et valgt databaseverktøy- lager sin egen (mest mulig normaliserte) relasjonsdatabase med nøkler og referanseintegritet som ikke bare lagrer strukturelle data, men også tekst og semi-strukturelle data (XML)- kan utnytte databaseverktøyet funksjonalitet til utvidet bruk av SQL i en klient/tjener-sammenheng for å støtte opp rundt applikasjoner mot databasen- kan utnytte databaseverktøyet til å lagre temporale data- kan utføre SQL-spørringer mot ulike typer data i en database GENERELL KOMPETANSEKandidaten:- viser en bevisst holdning til lagring og representasjon av ulike typer data i et informasjonssystem- viser en bevisst holdning til databasedesign for å unngå unødvendig dobbeltlagring av data i en database Innhold:Installering og bruk av valgt databaseverktøy (MySQL). Flerbrukerproblematikk og databaseadministrasjon (DBA) i SQL. Bruk av SQL og innebygd funksjonalitet i databaseverktøyet (bruk av funksjoner/prosedyrer og triggere). Utnytte databaseverktøyet i en klient/tjener -arkitektur. Se på forholdet database - applikasjon. Lagring av ulike typer data; tekst, XML (semi-strukturelle data), dato/tid (temporale data). Enkel bruk av NoSQL-løsning. MySQL blir brukt i eksempler, men noen utfyllende eksempler i Oracle kan forekomme i lærestoffet.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Databaser 2 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Bedriftsintern 3 dager 27 000 kr
This course introduces participants to deploying and managing containerized applications on Google Kubernetes Engine (GKE) and the other services provided by Google Cloud... [+]
Through a combination of presentations, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as pods, containers, deployments, and services; as well as networks and application services. This course also covers deploying practical solutions including security and access management, resource management, and resource monitoring. Objectives This course teaches participants the following skills: Understand how software containers work Understand the architecture of Kubernetes Understand the architecture of Google Cloud Platform Understand how pod networking works in Kubernetes Engine Create and manage Kubernetes Engine clusters using the GCP Console and gcloud/kubectl commands Launch, roll back and expose jobs in Kubernetes Manage access control using Kubernetes RBAC and Google Cloud IAM Managing pod security policies and network policies Using Secrets and ConfigMaps to isolate security credentials and configuration artifacts Understand GCP choices for managed storage services Monitor applications running in Kubernetes Engine   Course Outline Module 1: Introduction to Google Cloud Platform Use the Google Cloud Platform Console Use Cloud Shell Define cloud computing Identify GCP’s compute services Understand regions and zones Understand the cloud resource hierarchy Administer your GCP resources Module 2: Containers and Kubernetes in GCP Create a container using Cloud Build Store a container in Container Registry Understand the relationship between Kubernetes and Google Kubernetes Engine (GKE) Understand how to choose among GCP compute platforms Module 3: Kubernetes Architecture Understand the architecture of Kubernetes: pods, namespaces Understand the control-plane components of Kubernetes Create container images using Google Cloud Build Store container images in Google Container Registry Create a Kubernetes Engine cluster Module 4: Kubernetes Operations Work with the kubectl command Inspect the cluster and Pods View a Pod’s console output Sign in to a Pod interactivelty Module 5: Deployment, Jobs, and Scaling Create and use Deployments Create and run Jobs and CronJobs Scale clusters manually and automatically Configure Node and Pod affinity Get software into your cluster with Helm charts and Kubernetes Marketplace Module 6: GKE Networking Create Services to expose applications that are running within Pods Use load balancers to expose Services to external clients Create Ingress resources for HTTP(S) load balancing Leverage container-native load balancing to improve Pod load balancing Define Kubernetes network policies to allow and block traffic to pods Module 7: Persistent Data and Storage Use Secrets to isolate security credentials Use ConfigMaps to isolate configuration artifacts Push out and roll back updates to Secrets and ConfigMaps Configure Persistent Storage Volumes for Kubernetes Pods Use StatefulSets to ensure that claims on persistent storage volumes persist across restarts Module 8: Access Control and Security in Kubernetes and Kubernetes Engine Understand Kubernetes authentication and authorization Define Kubernetes RBAC roles and role bindings for accessing resources in namespaces Define Kubernetes RBAC cluster roles and cluster role bindings for accessing cluster-scoped resources Define Kubernetes pod security policies Understand the structure of GCP IAM Define IAM roles and policies for Kubernetes Engine cluster administration Module 9: Logging and Monitoring Use Stackdriver to monitor and manage availability and performance Locate and inspect Kubernetes logs Create probes for wellness checks on live applications Module 10: Using GCP Managed Storage Services from Kubernetes Applications Understand pros and cons for using a managed storage service versus self-managed containerized storage Enable applications running in GKE to access GCP storage services Understand use cases for Cloud Storage, Cloud SQL, Cloud Spanner, Cloud Bigtable, Cloud Firestore, and BigQuery from within a Kubernetes application [-]
Les mer