IT-kurs
Du har valgt: Valderøy
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Valderøy ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
1 dag 9 500 kr
10 Oct
12 Dec
AZ-2005: Develop AI agents using Azure OpenAI and the Semantic Kernel SDK [+]
AZ-2005: Develop AI agents using Azure OpenAI and the Semantic Kernel SDK [-]
Les mer
5 dager 25 500 kr
MD-101: Managing Modern Desktops [+]
MD-101: Managing Modern Desktops [-]
Les mer
5 dager 45 000 kr
28 Jul
01 Sep
29 Sep
RH294: Red Hat System Administration III: Linux Automation with Ansible [+]
RH294: Red Hat System Administration III: Linux Automation with Ansible [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Oslo 2 dager 16 900 kr
04 Sep
04 Sep
20 Nov
SAFe® 6.0 DevOps [+]
SAFe® DevOps Certification [-]
Les mer
Oslo 1 dag 9 900 kr
18 Aug
18 Aug
ITIL® 4 Practitioner: Relationship Management [+]
ITIL® 4 Practitioner: Relationship Management [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
Successful completion of this five-day, instructor-led course should enhance the student’s understanding of configuring and managing Palo Alto Networks Next-Generation Fi... [+]
COURSE OVERVIEW The course includes hands-on experience configuring, managing, and monitoring a firewall in a lab environment TARGET AUDIENCE This course is aimed at Security Engineers, Security Administrators, Security Operations Specialists, Security Analysts, and Support Staff. COURSE OBJECTIVES After you complete this course, you will be able to: Configure and manage the essential features of Palo Alto Networks next-generation firewalls Configure and manage Security and NAT policies to enable approved traffic to and from zones Configure and manage Threat Prevention strategies to block traffic from known and unknown IP addresses, domains, and URLs Monitor network traffic using the interactive web interface and firewall reports COURSE CONTENT 1 - Palo Alto Networks Portfolio and Architecture 2 - Configuring Initial Firewall Settings 3 - Managing Firewall Configurations 4 - Managing Firewall Administrator Accounts 5 - Connecting the Firewall to Production Networks with Security Zones 6 - Creating and Managing Security Policy Rules 7 - Creating and Managing NAT Policy Rules 8 - Controlling Application Usage with App-ID 9 - Blocking Known Threats Using Security Profiles 10 - Blocking Inappropriate Web Traffic with URL Filtering 11 - Blocking Unknown Threats with Wildfire 12 - Controlling Access to Network Resources with User-ID 13 - Using Decryption to Block Threats in Encrypted Traffic 14 - Locating Valuable Information Using Logs and Reports 15 - What's Next in Your Training and Certification Journey Supplemental Materials Securing Endpoints with GlobalProtect Providing Firewall Redundancy with High Availability Connecting Remotes Sites using VPNs Blocking Common Attacks Using Zone Protection   FURTHER INFORMATION Level: Introductory Duration: 5 days Format: Lecture and hands-on labs Platform support: Palo Alto Networks next-generation firewalls running PAN-OS® operating system version 11.0     [-]
Les mer
Bergen Oslo 2 dager 9 900 kr
26 Aug
26 Aug
04 Sep
Excel Videregående [+]
Excel Videregående [-]
Les mer
Oslo Bergen 4 dager 25 900 kr
25 Nov
25 Nov
16 Dec
Advanced Python Development [+]
Advanced Python Development [-]
Les mer
Oslo 2 dager 16 900 kr
25 Sep
25 Sep
18 Dec
htWeb Security for Developers [+]
httpWeb Security for Developers [-]
Les mer
Nettkurs 9 timer 549 kr
Ta vårt videokurs i Lightroom CC fra din datamaskin. Lær så mye du vil, når du vil. Du får gratis hjelp. Du får kursbevis. Du får tilgang til alle kurs. Meld deg på her! [+]
Lightroom CC er et råflott bilderedigeringsverktøy for fotoentusiaster. Lightroom CC inneholder alt du trenger for å organisere, redigere, lagre og dele bildene dine på tvers av enheter - dette være seg datamaskin, nettbrett eller mobil. Det betyr at du kan redigere et bilde på datamaskinen og fortsette på mobilen. Bildene synkroniseres nemlig i skyen. I dette kurset kommer Espen Faugstad til å guide deg gjennom programmet fra A til Å. Du kommer til å lære å importere og organisere, redigere ved hjelp av enkle og avanserte verktøy, og eksportere og dele. Du kommer også til å lære hvordan den skybaserte lagringsplassen kommer til å påvirke, og ikke minst, forbedre din digitale arbeidsflyt.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Importere Kapittel 3: Organisere Kapittel 4: Redigere (enkel) Kapittel 5: Beskjære Kapittel 6: Redigere (avansert) Kapittel 7: Eksportere Kapittel 8: Avslutning   Varighet: 2 timer og 16 minutter.   Hørt om Netflix? Vi er som dem, bare at vi lager nettkurs. Utdannet.no AS er en norsk startup som utvikler nettkurs i datateknologi, kreative fagfelt og grunnleggende forretningsferdigheter. Med støtte fra Innovasjon Norge og Forskningsrådet utvikler vi nestegenerasjons kursplattform, med mål om å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle. Med over 1 million videovisninger, 20.000 registrerte medlemmer og en gjennomsnittlig årlig vekst på 45 % er vi godt i gang med å befeste vår posisjon i det norske markedet. Vi har kunder fra bedrifter som: Adresseavisen, Coca-Cola, Helsedirektoratet, IKEA, Joblearn, NAV, Nordea, NorgesGruppen, NRK, Oslo kommune, Securitas, Telenor og Utdanningsforbundet.   [-]
Les mer
Oslo 4 dager 23 900 kr
Angular 14 Development [+]
Angular 14 Development [-]
Les mer