IT-kurs
Du har valgt: Vejen
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Vejen ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to plan and manage the full lifecycle of all IT assets to help your organisation maximise value, control costs, and manage risks related to the purchase, use, a... [+]
Understand the purpose and key concepts of IT Asset Management, elucidating its significance in managing and optimising the lifecycle of IT assets to maximise value, control costs, and manage risks. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
2 dager 8 500 kr
Etter fullført kurs skal du beherske mulighetene Final Cut Pro. [+]
• Final Cut grensesnitt & funksjoner oversikt som: Fordeler av “magnetic timeline”, “connected clips & secondary storyline”, lyd og “roles”• Final Cut keyboard shortcuts• Import og organisasjon av videofiler i “library” med “keywords”• Klipp av en videoreportasje med innklippsbilder, intervju, voiceover og logo/ grafikk• Sync av ekstern lyd• Flerkameraklipping med “Multicam”• Fargekorrigering• Lydmiks og lydforbedring• Enkle “Film looks” effekter og justering av effekter• 2D og 3D tekst, legge på navn og tittel, enkel keyframeing & animasjon av logo og grafikk• Eksport Dag 2: Fordypning i FCPX og Motion 5 for å bygge et sett av animasjoner og grafikk for lynrask produksjon av et TV-program / YouTube video-serie • Avanserte video- og grafikk-komposisjoner med flere lag• Triks til å overkomme begrensningene i “magnetic timeline”• Anonymisering av ansikter og nummerskilt• Motion: Tilpassning av FCPX “Transitions” og “Titles” i Motion 5 for å skape egne design på en enkel måte• Motion 5: 2D animasjoner og tekst tracking• Motion 5: Enkle 3D animasjoner og kamera• Motion 5: Keyframes og Behaviors• Motion 5: Vi kombinerer alt vi lærer om Motion 5 og skaper grafiske elementer for et TV-program / YouTube video-serie som logo-intro-animasjon, lower-third, custom transitions/logo stinger.• Motion 5: Publisering til FCPX for lynrask produksjon i framtiden [-]
Les mer
Virtuelt eller personlig 2 dager 9 900 kr
Autodesk Nastran In-CAD – Grunnkurs får deg godt i gang med Nastan In-CAD og finite element (FE) beregninger. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Her er et utvalg av temaene du vil lære på kurset: Generelt om Nastran In-CAD brukergrensesnitt Gjennomgang av hvilke typer FE-analyser som kan utføres med Nastran In-CAD Innføring i opprettelse av beregningsmodeller i Nastran In-CAD Gjennomføre analyser Vurdere beregningsresultater Presentasjon av beregningsresultater Det blir undervist i grunnleggende funksjonalitet og metodikk som gjør at deltakeren kan skape FE-beregningsmodeller med utgangspunkt i 3D-modeller i Inventor. Autodesk Nastan In-CAD – Grunnkurs er et kurs som alle Inventor-brukere bør gjennomføre for å komme i gang med FE-beregninger av konstruksjoner som modelleres i Inventor.   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, L... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Grunnleggende objektorientert programmering i for eksempel Java eller C++ Innleveringer: Øvinger: 8 av 11 må være godkjent.  Personlig veileder: ja Vurderingsform: Skriftlig eksamen, 4 timer. Case-beskrivelser etc. legges ut i ItsLearning 24 timer før. (NB! Eksamensform kan bli endret under forutsetning av at ny teknologi gjør det mulig å arrangere eksamen elektronisk.) Ansvarlig: Grethe Sandstrak Eksamensdato: 05.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet skal kandidaten ha følgende samlete læringsutbytte: KUNNSKAPER:Kandidaten:- kan gjøre rede for sentrale begreper innen objektorientering- kan konstruere et objektorientert C#. NET-program ut fra en gitt problemstilling- kan finne fram, sette seg inn i og anvende dokumentasjon om .NET Framework library- kjenner til ulike GUI-komponenter og hvordan de brukes i C#-programmer FERDIGHETER:Kandidaten kan:- sette opp programmiljø for å utvikle og kjøre C#. NET applikasjoner på egen pc- kan anvende klasser fra .NET Framework library- lage C#.NET program* med fordeling av oppgaver mellom objekter og der arv og polymorfi benyttes* med grafiske brukergrensesnitt* som kommuniserer med en database via SQL* med LINQ, delegater, templates GENERELL KOMPETANSEKandidaten kan:- kommunisere om objektorientert programmering og databaser med relevant begrepsapparat Innhold:NET-arkitekturen. Utviklingsmiljøet. Grunnleggende C#-syntaks. Objektorientert programmering med arv og polymorfi. GUI. Datafiler. Programmering mot databaser. ADO.NET, LINQ, Templates, Collections.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag C#.NET 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This course teaches Azure professionals about the core capabilities of Google Cloud in the four technology pillars: networking, compute, storage, and database. [+]
The course is designed for Azure system administrators, solutions architects, and SysOps administrators who are familiar with Azure features and setup and want to gain experience configuring Google Cloud products immediately.  This course uses lectures, demos, and hands-on labs to show you the similarities and differences between the two platforms and teach you about some basic tasks on Google Cloud. Objectives This course teaches participants the following skills: Identify Google Cloud counterparts for Azure IaaS, Azure PaaS, Azure SQL, Azure Blob Storage, Azure Application Insights, and Azure Data Lake Configure accounts, billing, projects, networks, subnets, firewalls, VMs, disks, auto-scaling, load balancing, storage, databases, IAM, and more Manage and monitor applications Explain feature and pricing model differences All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud -Explain the advantages of Google Cloud-Define the components of Google’s network infrastructure, including points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud -Identify the purpose of projects on Google Cloud-Understand how Azure’s resource hierarchy differs from Google Cloud’s-Understand the purpose of and use cases for Identity and Access Management-Understand how Azure AD differs from Google Cloud IAM-List the methods of interacting with Google Cloud-Launch a solution using Cloud Marketplace Module 3: Virtual Machines in the Cloud -Identify the purpose and use cases for Google Compute Engine-Understand the basics of networking in Google Cloud-Understand how Azure VPC differs from Google VPC-Understand the similarities and differences between Azure VM and Google Compute Engine-Understand how typical approaches to load-balancing in Google Cloud differ from those in AzureDeploy applications using Google Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Cloud Storage, Cloud SQL, Cloud Bigtable and Cloud Datastore-Understand how Azure Blob compares to Cloud Storage-Compare Google Cloud’s managed database services with Azure SQL-Learn how to choose among the various storage options on Google Cloud-Load data from Cloud Storage into BigQuery Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers-Identify the purpose of and use cases for Google Container Engine and Kubernetes-Understand how Azure Kubernetes Service differs from Google Kubernetes Engine-Provision a Kubernetes cluster using Kubernetes Engine-Deploy and manage Docker containers using kubectl Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine-Contrast the App Engine Standard environment with the App Engine Flexible environment-Understand how App Engine differs from Azure App Service-Understand the purpose of and use cases for Google Cloud Endpoints Module 7: Developing, Deploying and Monitoring in the Cloud -Understand options for software developers to host their source code-Understand the purpose of template-based creation and management of resources-Understand how Cloud Deployment Manager differs from Azure Resource Manager-Understand the purpose of integrated monitoring, alerting, and debugging-Understand how Google Monitoring differs from Azure Application Insights and Azure Log Analytics-Create a Deployment Manager deployment-Update a Deployment Manager deployment-View the load on a VM instance using Google Monitoring Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms-Understand how Google Cloud BigQuery differs from Azure Data Lake-Understand how Google Cloud Pub/Sub differs from Azure Event Hubs and Service Bus-Understand how Google Cloud’s machine-learning APIs differ from Azure’s-Load data into BigQuery from Cloud Storage-Perform queries using BigQuery to gain insight into data Module 9: Summary and Review -Review the products that make up Google Cloud and remember how to choose among them-Understand next steps for training and certification-Understand, at a high level, the process of migrating from Azure to Google Cloud [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Installasjon av tjenermaskin og tilkobling av arbeidsstasjoner med Windows 7/8. Brukeradministrasjon og hvordan sikkerheten i Windows 2008/2012 nettverk settes opp med br... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: God kjennskap til Windows XP/Windows 7/Windows 8 eller god generell kunnskap om andre operativsystemer. Innleveringer: Innleverte øvinger. Det blir gitt 12 øvinger og 8 må være godkjent for å kunne gå opp til eksamen Personlig veileder: ja Vurderingsform: 3-timers individuell skriftlig eksamen Ansvarlig: Jostein Lund Eksamensdato: 05.12.13 / 08.05.14         Læremål: Etter å ha gjennomført emnet Windows server for systemansvarlige skal studenten ha følgende læringsutbytte: KUNNSKAPER:Kandidaten:- har innsikt i drift av nettverk basert på Windows Server, programvaredistribusjon, virtualisering og overvåking. FERDIGHETER:Kandidaten kan:- installere Windows Server med roller og tjenester- lage/opprette og konfigurere Active Directory- opprette brukere, grupper og tilgangskontroll- benytte Group Policy til utrulling av skrivere og programvare, implementere innloggings-script og sette passordpolicy- opprette og konfigurere lokale og vandrende (roaming) profiler- utvikle, tilpasse og implementere innloggingsscript for brukerne- sette opp og drifte lokale og delte skrivere- rulle ut operativsystemer og applikasjoner- opprette og administrere virtuelle maskiner og nettverk GENERELL KOMPETANSE:Kandidaten har:- perspektiv og kompetanse i å velge riktige og tilpassete driftsløsninger- kompetanse i å formidle driftsterminologi, både muntlig og skriftlig Innhold:Installasjon av tjenermaskin og tilkobling av arbeidsstasjoner med Windows 7/8. Brukeradministrasjon og hvordan sikkerheten i Windows 2008/2012 nettverk settes opp med bruk av Active Directory, DNS, deling, NTFS, grupper, domener og Group Policy. Oppsett av profiler, loginscript for brukere, utskriftmiljøet, distribusjon av OS og programvare, fjerndrifting og virtualisering (server 2008/2012).Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Windows server for systemansvarlige 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
3 dager 7 900 kr
Etter fullført kurs skal du kunne frilegge, retusjere og sammenkopiere bilder. [+]
Vil du komme igang med Photoshop? På dette kurset lærer du å korrigere farger og kontraster i bilder for å oppnå en bedre kvalitet. Du lærer å retusjere bort uønskede elementer og fjerne rynker. Du lærer å sammenkopiere flere elementer ved hjelp av lag og masker og lagre bilder til ulike medier, med ulik oppløsning og ulike filformater. Når du har vært gjennom dette Photoshop-kurset kan du bearbeide din egen eller andres ide fra skisse til et ferdig bilde. Du kan lagre bildet til det mediet det skal brukes i med høy kvalitet. Dette lærer du: Fjerne bakgrunnen i bildene Fargekorrigering slik at du får spennende og fine bilder Retusjering Sette sammen flere bilder Bruk av masker Jobbe med tekst og form Lagre bilder til ulike medier, med ulik oppløsning og ulike filformater Optimalisering av bilder til web https://igm.no/photoshop-kurs/ [-]
Les mer
Virtuelt eller personlig 2 dager 9 900 kr
Kurset er rettet mot personer som skal konstruere VVS-anlegg i 3D. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Revit MEP MagiCAD VVS Videregående   Her er et utvalg av temaene du vil lære på kurset: Import av IFC-fil fra ArchiCADOppsett av prosjekt basert på IFC-fil (Levels, Grids, Spaces, georeferering)Lage egne produkter med MagiCAD-informasjon og Revit-familierSamspill mellom MagiCAD-produkter og Revit-familierTFM-merkesystemBeregninger: Dimensjonering, utbalansering, lydIFC: Property Set Manager, eksportkonfigurasjon, evaluering i Solibri   Dette er et populært kurs, meld deg på nå! Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og ... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Studenten bør kunne installere linux, og kjenne til enkle linuxkommandoer som f.eks. «ls». Nybegynnere uten erfaring med linux anbefales å starte med emnet Praktisk Linux, som gir disse forkunnskapene. Innleveringer: Øvinger: 8 av 12 må være godkjent. Vurderingsform: Skriftlig eksamen 3t (60%) og mappe (40%), der alle øvinger er med i mappevurderingen. Ansvarlig: Helge Hafting Eksamensdato: 18.12.13 / 27.05.14         Læremål: Etter å ha gjennomført emnet skal studenten ha følgende samlede læringsutbytte: KUNNSKAPER:Kandidaten:- kan legge planer for en ny tjenermaskin- kan forklare bruk av ulike filsystemer, kvoter og aksesskontrollister FERDIGHETER:Kandidaten:- kan installere linux og vanlig tjenerprogramvare- kan vedlikeholde oppsettet på en tjenermaskin, som regel ved å tilpasse konfigurasjonsfiler- kan lete opp informasjon på nettet, for å løse drifts- og installasjonsproblemer GENERELL KOMPETANSE:Kandidaten:- kan vurdere linuxprogramvare for å dekke en organisasjons behov for tjenester Innhold:Planlegging av linuxtjenere, installasjon av tjenester som filtjener, utskrift, dns, dhcp, dynamisk webtjener, epost, katalogtjenester, fjernadministrasjon, scripting og automasjon.Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Linux systemdrift 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer
Virtuelt klasserom 4 dager 22 000 kr
Learn how to investigate, respond to, and hunt for threats using Microsoft Azure Sentinel, Azure Defender, and Microsoft 365 Defender. [+]
COURSE OVERVIEW Learn how to investigate, respond to, and hunt for threats using Microsoft Azure Sentinel, Azure Defender, and Microsoft 365 Defender. In this course you will learn how to mitigate cyberthreats using these technologies. Specifically, you will configure and use Azure Sentinel as well as utilize Kusto Query Language (KQL) to perform detection, analysis, and reporting. The course was designed for people who work in a Security Operations job role and helps learners prepare for the exam SC-200: Microsoft Security Operations Analyst. TARGET AUDIENCE The Microsoft Security Operations Analyst collaborates with organizational stakeholders to secure information technology systems for the organization. Their goal is to reduce organizational risk by rapidly remediating active attacks in the environment, advising on improvements to threat protection practices, and referring violations of organizational policies to appropriate stakeholders. Responsibilities include threat management, monitoring, and response by using a variety of security solutions across their environment. The role primarily investigates, responds to, and hunts for threats using Microsoft Azure Sentinel, Azure Defender, Microsoft 365 Defender, and third-party security products. Since the Security Operations Analyst consumes the operational output of these tools, they are also a critical stakeholder in the configuration and deployment of these technologies. COURSE OBJECTIVES Explain how Microsoft Defender for Endpoint can remediate risks in your environment Create a Microsoft Defender for Endpoint environment Configure Attack Surface Reduction rules on Windows 10 devices Perform actions on a device using Microsoft Defender for Endpoint Investigate domains and IP addresses in Microsoft Defender for Endpoint Investigate user accounts in Microsoft Defender for Endpoint Configure alert settings in Microsoft Defender for Endpoint Explain how the threat landscape is evolving Conduct advanced hunting in Microsoft 365 Defender Manage incidents in Microsoft 365 Defender Explain how Microsoft Defender for Identity can remediate risks in your environment. Investigate DLP alerts in Microsoft Cloud App Security Explain the types of actions you can take on an insider risk management case. Configure auto-provisioning in Azure Defender Remediate alerts in Azure Defender Construct KQL statements Filter searches based on event time, severity, domain, and other relevant data using KQL Extract data from unstructured string fields using KQL Manage an Azure Sentinel workspace Use KQL to access the watchlist in Azure Sentinel Manage threat indicators in Azure Sentinel Explain the Common Event Format and Syslog connector differences in Azure Sentinel Connect Azure Windows Virtual Machines to Azure Sentinel Configure Log Analytics agent to collect Sysmon events Create new analytics rules and queries using the analytics rule wizard Create a playbook to automate an incident response Use queries to hunt for threats Observe threats over time with livestream COURSE CONTENT Module 1: Mitigate threats using Microsoft Defender for Endpoint Implement the Microsoft Defender for Endpoint platform to detect, investigate, and respond to advanced threats. Learn how Microsoft Defender for Endpoint can help your organization stay secure. Learn how to deploy the Microsoft Defender for Endpoint environment, including onboarding devices and configuring security. Learn how to investigate incidents and alerts using Microsoft Defender for Endpoints. Perform advanced hunting and consult with threat experts. You will also learn how to configure automation in Microsoft Defender for Endpoint by managing environmental settings.. Lastly, you will learn about your environment's weaknesses by using Threat and Vulnerability Management in Microsoft Defender for Endpoint. Lessons M1 Protect against threats with Microsoft Defender for Endpoint Deploy the Microsoft Defender for Endpoint environment Implement Windows 10 security enhancements with Microsoft Defender for Endpoint Manage alerts and incidents in Microsoft Defender for Endpoint Perform device investigations in Microsoft Defender for Endpoint Perform actions on a device using Microsoft Defender for Endpoint Perform evidence and entities investigations using Microsoft Defender for Endpoint Configure and manage automation using Microsoft Defender for Endpoint Configure for alerts and detections in Microsoft Defender for Endpoint Utilize Threat and Vulnerability Management in Microsoft Defender for Endpoint Lab M1: Mitigate threats using Microsoft Defender for Endpoint Deploy Microsoft Defender for Endpoint Mitigate Attacks using Defender for Endpoint After completing module 1, students will be able to: Define the capabilities of Microsoft Defender for Endpoint Configure Microsoft Defender for Endpoint environment settings Configure Attack Surface Reduction rules on Windows 10 devices Investigate alerts in Microsoft Defender for Endpoint Describe device forensics information collected by Microsoft Defender for Endpoint Conduct forensics data collection using Microsoft Defender for Endpoint Investigate user accounts in Microsoft Defender for Endpoint Manage automation settings in Microsoft Defender for Endpoint Manage indicators in Microsoft Defender for Endpoint Describe Threat and Vulnerability Management in Microsoft Defender for Endpoint Module 2: Mitigate threats using Microsoft 365 Defender Analyze threat data across domains and rapidly remediate threats with built-in orchestration and automation in Microsoft 365 Defender. Learn about cybersecurity threats and how the new threat protection tools from Microsoft protect your organization’s users, devices, and data. Use the advanced detection and remediation of identity-based threats to protect your Azure Active Directory identities and applications from compromise. Lessons M2 Introduction to threat protection with Microsoft 365 Mitigate incidents using Microsoft 365 Defender Protect your identities with Azure AD Identity Protection Remediate risks with Microsoft Defender for Office 365 Safeguard your environment with Microsoft Defender for Identity Secure your cloud apps and services with Microsoft Cloud App Security Respond to data loss prevention alerts using Microsoft 365 Manage insider risk in Microsoft 365 Lab M2: Mitigate threats using Microsoft 365 Defender Mitigate Attacks with Microsoft 365 Defender After completing module 2, students will be able to: Explain how the threat landscape is evolving. Manage incidents in Microsoft 365 Defender Conduct advanced hunting in Microsoft 365 Defender Describe the investigation and remediation features of Azure Active Directory Identity Protection. Define the capabilities of Microsoft Defender for Endpoint. Explain how Microsoft Defender for Endpoint can remediate risks in your environment. Define the Cloud App Security framework Explain how Cloud Discovery helps you see what's going on in your organization Module 3: Mitigate threats using Azure Defender Use Azure Defender integrated with Azure Security Center, for Azure, hybrid cloud, and on-premises workload protection and security. Learn the purpose of Azure Defender, Azure Defender's relationship to Azure Security Center, and how to enable Azure Defender. You will also learn about the protections and detections provided by Azure Defender for each cloud workload. Learn how you can add Azure Defender capabilities to your hybrid environment. Lessons M3 Plan for cloud workload protections using Azure Defender Explain cloud workload protections in Azure Defender Connect Azure assets to Azure Defender Connect non-Azure resources to Azure Defender Remediate security alerts using Azure Defender Lab M3: Mitigate threats using Azure Defender Deploy Azure Defender Mitigate Attacks with Azure Defender After completing module 3, students will be able to: Describe Azure Defender features Explain Azure Security Center features Explain which workloads are protected by Azure Defender Explain how Azure Defender protections function Configure auto-provisioning in Azure Defender Describe manual provisioning in Azure Defender Connect non-Azure machines to Azure Defender Describe alerts in Azure Defender Remediate alerts in Azure Defender Automate responses in Azure Defender Module 4: Create queries for Azure Sentinel using Kusto Query Language (KQL) Write Kusto Query Language (KQL) statements to query log data to perform detections, analysis, and reporting in Azure Sentinel. This module will focus on the most used operators. The example KQL statements will showcase security related table queries. KQL is the query language used to perform analysis on data to create analytics, workbooks, and perform hunting in Azure Sentinel. Learn how basic KQL statement structure provides the foundation to build more complex statements. Learn how to summarize and visualize data with a KQL statement provides the foundation to build detections in Azure Sentinel. Learn how to use the Kusto Query Language (KQL) to manipulate string data ingested from log sources. Lessons M4 Construct KQL statements for Azure Sentinel Analyze query results using KQL Build multi-table statements using KQL Work with data in Azure Sentinel using Kusto Query Language Lab M4: Create queries for Azure Sentinel using Kusto Query Language (KQL) Construct Basic KQL Statements Analyze query results using KQL Build multi-table statements using KQL Work with string data using KQL statements After completing module 4, students will be able to: Construct KQL statements Search log files for security events using KQL Filter searches based on event time, severity, domain, and other relevant data using KQL Summarize data using KQL statements Render visualizations using KQL statements Extract data from unstructured string fields using KQL Extract data from structured string data using KQL Create Functions using KQL Module 5: Configure your Azure Sentinel environment Get started with Azure Sentinel by properly configuring the Azure Sentinel workspace. Traditional security information and event management (SIEM) systems typically take a long time to set up and configure. They're also not necessarily designed with cloud workloads in mind. Azure Sentinel enables you to start getting valuable security insights from your cloud and on-premises data quickly. This module helps you get started. Learn about the architecture of Azure Sentinel workspaces to ensure you configure your system to meet your organization's security operations requirements. As a Security Operations Analyst, you must understand the tables, fields, and data ingested in your workspace. Learn how to query the most used data tables in Azure Sentinel. Lessons M5 Introduction to Azure Sentinel Create and manage Azure Sentinel workspaces Query logs in Azure Sentinel Use watchlists in Azure Sentinel Utilize threat intelligence in Azure Sentinel Lab M5 : Configure your Azure Sentinel environment Create an Azure Sentinel Workspace Create a Watchlist Create a Threat Indicator After completing module 5, students will be able to: Identify the various components and functionality of Azure Sentinel. Identify use cases where Azure Sentinel would be a good solution. Describe Azure Sentinel workspace architecture Install Azure Sentinel workspace Manage an Azure Sentinel workspace Create a watchlist in Azure Sentinel Use KQL to access the watchlist in Azure Sentinel Manage threat indicators in Azure Sentinel Use KQL to access threat indicators in Azure Sentinel Module 6: Connect logs to Azure Sentinel Connect data at cloud scale across all users, devices, applications, and infrastructure, both on-premises and in multiple clouds to Azure Sentinel. The primary approach to connect log data is using the Azure Sentinel provided data connectors. This module provides an overview of the available data connectors. You will get to learn about the configuration options and data provided by Azure Sentinel connectors for Microsoft 365 Defender. Lessons M6 Connect data to Azure Sentinel using data connectors Connect Microsoft services to Azure Sentinel Connect Microsoft 365 Defender to Azure Sentinel Connect Windows hosts to Azure Sentinel Connect Common Event Format logs to Azure Sentinel Connect syslog data sources to Azure Sentinel Connect threat indicators to Azure Sentinel Lab M6: Connect logs to Azure Sentinel Connect Microsoft services to Azure Sentinel Connect Windows hosts to Azure Sentinel Connect Linux hosts to Azure Sentinel Connect Threat intelligence to Azure Sentinel After completing module 6, students will be able to: Explain the use of data connectors in Azure Sentinel Explain the Common Event Format and Syslog connector differences in Azure Sentinel Connect Microsoft service connectors Explain how connectors auto-create incidents in Azure Sentinel Activate the Microsoft 365 Defender connector in Azure Sentinel Connect Azure Windows Virtual Machines to Azure Sentinel Connect non-Azure Windows hosts to Azure Sentinel Configure Log Analytics agent to collect Sysmon events Explain the Common Event Format connector deployment options in Azure Sentinel Configure the TAXII connector in Azure Sentinel View threat indicators in Azure Sentinel Module 7: Create detections and perform investigations using Azure Sentinel Detect previously uncovered threats and rapidly remediate threats with built-in orchestration and automation in Azure Sentinel. You will learn how to create Azure Sentinel playbooks to respond to security threats. You'll investigate Azure Sentinel incident management, learn about Azure Sentinel events and entities, and discover ways to resolve incidents. You will also learn how to query, visualize, and monitor data in Azure Sentinel. Lessons M7 Threat detection with Azure Sentinel analytics Threat response with Azure Sentinel playbooks Security incident management in Azure Sentinel Use entity behavior analytics in Azure Sentinel Query, visualize, and monitor data in Azure Sentinel Lab M7: Create detections and perform investigations using Azure Sentinel Create Analytical Rules Model Attacks to Define Rule Logic Mitigate Attacks using Azure Sentinel Create Workbooks in Azure Sentinel After completing module 7, students will be able to: Explain the importance of Azure Sentinel Analytics. Create rules from templates. Manage rules with modifications. Explain Azure Sentinel SOAR capabilities. Create a playbook to automate an incident response. Investigate and manage incident resolution. Explain User and Entity Behavior Analytics in Azure Sentinel Explore entities in Azure Sentinel Visualize security data using Azure Sentinel Workbooks. Module 8: Perform threat hunting in Azure Sentinel In this module, you'll learn to proactively identify threat behaviors by using Azure Sentinel queries. You'll also learn to use bookmarks and livestream to hunt threats. You will also learn how to use notebooks in Azure Sentinel for advanced hunting. Lessons M8 Threat hunting with Azure Sentinel Hunt for threats using notebooks in Azure Sentinel Lab M8 : Threat hunting in Azure Sentinel Threat Hunting in Azure Sentinel Threat Hunting using Notebooks After completing this module, students will be able to: Describe threat hunting concepts for use with Azure Sentinel Define a threat hunting hypothesis for use in Azure Sentinel Use queries to hunt for threats. Observe threats over time with livestream. Explore API libraries for advanced threat hunting in Azure Sentinel Create and use notebooks in Azure Sentinel [-]
Les mer
Oslo 5 dager 27 500 kr
15 Sep
15 Sep
17 Nov
PL-500T00: Microsoft Power Automate RPA Developer [+]
PL-500: Microsoft Power Automate RPA Developer [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer