IT-kurs
Møre og Romsdal
Du har valgt: Volda
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Volda ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Virtuelt klasserom 2 timer 1 990 kr
Power BI – Profesjonelle rapporter [+]
Power BI – Profesjonelle rapporter [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer
Nettstudie 11 800 kr
Med utgangspunkt i automasjon i bygg lærere du I denne utdanningen lærer du om grunnleggende programmering i HTML, Python, og JavaScript, mobilapp-utvikling, samt prosjek... [+]
Koding automasjon i bygg Denne fagskole utdanningens innhold tilsvarer 5 studiepoeng og utdanning er på nettet.  Maksimalt antall studieplasser er 25. Utdanningen er praktisk tilrettelagt, slik at du kan anvende teori og kunnskap i praksis. Du vil få mulighet til å jobbe med reelle og aktuelle problemstillinger, og du vil få tilbakemelding fra erfarne fagfolk. Læremateriellet består av video, podkaster, resyme av fagstoff, artikler, forskningsrapporter, foredrag, presentasjon av fagstoff, samt quizer og annet. Læremateriellet du får tilgang til er på en LMS som er under kontinuerlig utvikling og oppdatering. Du får ett års tilgang til læremateriell, etter at utdanningen er ferdig, på Learning Management System (LMS) I denne utdanningen lærer du om: Installere Python på egen PC (Spyder): Veiledning for hvordan du installerer Python og Spyder IDE for å utvikle Python-programmer. Introduksjon til programmering i: HTML: Grunnleggende om HTML-strukturer og webutvikling. Python: Introduksjon til grunnleggende programmeringskonsepter, inkludert: Variabler og Datatyper: Opprettelse og bruk av variabler med ulike datatyper som heltall (integers), desimaltall (floats), strenger (strings), lister (lists), tupler (tuples), og dictionaries (dictionaries). Operatorer: Bruk av matematiske, sammenlignings-, og logiske operatorer for beregninger og verdikomparasjoner. Løkker: Implementering av kontrollstrukturer som if-setninger, for- og while-løkker, samt avvikshantering med try og except for å styre programflyten. Funksjoner: Definisjon og anvendelse av funksjoner for å organisere koden i moduler og forbedre lesbarheten og vedlikeholdbarheten. Input og Output: Håndtering av datainnlesning fra bruker og datavisning til skjermen. Moduler og Biblioteker: Utforsking av innebygde og tredjepartsmoduler for å utvide programmets funksjonalitet. Filstyring: Åpning, lesing, skriving, og lukking av filer. Strukturering av kode: Organisering av kode ved hjelp av funksjoner, klasser, og moduler for bedre lesbarhet og vedlikehold. JavaScript: Grunnleggende programmeringskonsepter for å utvikle interaktive webapplikasjoner. Programmere App til mobil telefon: Introduksjon til å kunne programmere Android-apps. Fra sensor til web: Utvikling av programmer fra grunnen av, fra å programmere Arduino UNO som en Modbus RTU slave til å utvikle en Modbus RTU master i Python. Konfigurasjon av egen PC som webserver (IIS) for å støtte webapplikasjoner. Integrert prosjektarbeid som involverer programmering fra sensor til web, som kombinerer hardware og software for å samle, behandle, og presentere data. Inkluderer API-er (Application Programming Interfaces) og tekniske beskrivelser. Du velger selv prosjektoppgave: Oppgaven kan for eksempel innebære å innhente data via API fra https://www.yr.no/ eller en annen nettressurs. Ved å anvende Modbus for I/O på Arduino, er det mulig å utvikle et system som både overvåker og regulerer energiforbruket ditt. Brukergrensesnittet kan være basert på web, og konfigureres på din egen datamaskin. Denne utdanningen danner et solid fundament for videre læring og anvendelse av disse konseptene i automasjon i bygg. Bedriftsinterne utdanning tilpasset din bedrift Denne utdanningen kan tilbys som en bedriftsintern utdanning. Det faglige innholdet er fastsatt, men den faglige tilnærmingen kan tilpasses den enkelte bedrifts behov og ønsker. Ta kontakt for en prat, så kan vi sammen lage et utdanningsløp som passer for deg og din bedrift. Kontaktpersoner er Hans Gunnar Hansen (tlf. 91101824) og Vidar Luth-Hanssen (tlf. 91373153) [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Virtuelt eller personlig 1 dag 5 950 kr
Mer enn 1,6 millioner fagfolk innenfor design og konstruksjon verden over, bruker Bluebeam Revu til å optimalisere samarbeidet og gjennomføre prosjekter mer effektivt. [+]
Brukergrensesnittet. Opprette profiler med tilpasset oppsett. Verktøy for digital dokumentbehandling, slik som å sette sammen PDF’er, opprette hyperkoblinger, påføre digitale signaturer og stempler. Redigere innhold i PDF-filer Automatisk sammenligning Markeringsverktøy for bruk under designgjennomgang, etc. Bruk av Tool Chest til å spare symboler og tilpassede verktøy for enkel gjenbruk Bruk av markeringslisten til å sette status, kommentere, filtrere og rapportere Kalibrering og måleverktøy. Intro til mengdeberegning Intro til skybasert samarbeid med Studio Projects og Sessions   På kurset lærer du alle de viktigste funksjonene i Revu, noe som gir deg et godt overblikk og utgangspunkt for å jobbe videre med programmet. Du blir i stand til å digitalisere og effektivisere en rekke manuelle arbeidsprosesser, med tidsbesparelse og bedre kvalitet som resultat.   [-]
Les mer
5 dager 25 500 kr
MS-500: Microsoft 365 Security Administrator [+]
MS-500: Microsoft 365 Security Administrator [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 26 500 kr
29 Sep
29 Sep
27 Oct
AZ-204: Developing Solutions for Microsoft Azure [+]
AZ-204: Developing Solutions for Microsoft Azure [-]
Les mer
1 dag 8 500 kr
Dette éndagskurset gir ledere praktisk trening i cybersikkerhetsledelse, med fokus på strategisk IT-planlegging, risikohåndtering, og utvikling av effektive sikkerhetsrut... [+]
I en digital tidsalder hvor samhandling er essensielt for bedrifters suksess, er det kritisk for ledere å oppdatere sin kompetanse. Dette éndagskurset tilbyr praktisk trening og materiale for videre selvstudium, slik at ledere kan møte dagens databehov effektivt. Kurset fokuserer på tre hovedområder for å styrke deltakernes lederkompetanse innen datahåndtering. Det kombinerer teori og praksis for å maksimere læringen. Kurset avholdes på én arbeidsdag, med en strukturert agenda som dekker følgende temaer: Strategiske IT/IS-planer, inkludert organisatoriske strukturer, lederansvar, kompetansekartlegging, IT/IS-policyer, og en gjennomgang av IS-domener. Dette inkluderer også sikkerhetsaspekter som aktiva, nettverk, identitets- og tilgangsstyring, risikostyring, sikkerhetsvurdering og -testing, sikkerhetsoperasjoner, og sikkerhet i utviklingsfasen. Intern gapanalyse, oppbygging av en effektiv Enterprise Information Security Architecture (EISA), definering av opplæringskrav, tilpassede SETA-programmer, trusselvurdering, håndtering av sårbarheter, og en praktisk tilnærming til leverandørrisiko og sikkerhetsvurdering av digitale nettverk. Utvikling av KPI-dashboards, trusselvurdering, kommunikasjonsstrategier, introduksjon til økonomiske nøkkeltall innen informasjonssikkerhet, samt planlegging for forretningskontinuitet og katastrofegjenoppretting. Målsettingen er at hver deltaker etter kurset skal kunne sette SMART-mål for hvert punkt, hvor SMART representerer Spesifikke, Målbare, Oppnåelige, Relevante og Tidsbestemte mål. Kurset gir deltakerne verktøyene de trenger for å forbedre sitt lederskap i en digitalisert verden. Kursholder har jobbet med informasjonssikkerhet for ledende teknologiselskaper de siste 25 årene, og har hjulpet ledere finne farbare veier i krevende situasjoner. Han er sertifisert kvalitetsrevisor ISO 19011 og har utarbeidet sikkerhetsstyringsrutiner for selskaper som følger både enkle og svært strenge lovkrav. Han har en Ph.D. i Cybersecurity Leadership, en MBA innen Finans, Digital transformasjon, Forretningsstrategi, Kommunikasjon og Markedsføring. Han er sertifisert i Advanced Computer Security fra Stanford University og Cyber Forensics and Counterterrorism fra Harvard University. Han har også CISSP fra ISC2, Certified Data Privacy Solution Engineer fra ISACA, og CCSK (Certificate of Cloud Security Knowledge) fra CSA. I tillegg har han gjennomført NHH sitt styreprogram, som utgjør en relevant bakgrunn for dette kurset. Til daglig jobber han som CISO for et selskap med lokasjoner på 24 steder over hele verden. Selskapet må både sikre trygg drift og utvikle programvare og tjenester som må være i drift 24/7. [-]
Les mer
Virtuelt eller personlig 3 dager 12 480 kr
Autodesk 3ds Max er tilpasset arkitekter, ingeniører, designere og visualiseringseksperter, som leveres med en helt unik funksjonalitet for analyse av lysdistribusjon. [+]
Fleksible kurs for fremtiden Ny kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   3ds Max grunnkurs   Lag fotorealistiske presentasjoner av dine designløsninger! Her er et utvalg av temaene du vil lære på kurset: Grunnleggende funksjoner – Transformationer vha. move, rotate og scale Link til og import av DWG- og DXF-filer Lyssetning med standard lys Rendering med Scanline renderen og Mental Ray – Basics Editering av 2D- og 3D-geometri Dette kurset er tilpasset for arkitekter, ingeniører, designere og visualiseringseksperter, og gir en introduksjon til design og visualisering i 3ds MAX. Kurset vil gjøre deg i stand til å arbeide med lys, materialer og kamera i eksisterende 3D CAD/BIM-modeller.   Dette er et populært kurs, meld deg på nå!   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
5 dager 30 000 kr
MCA: Microsoft 365 Modern Desktop Administrator Associate - Boot Camp [+]
MCA: Microsoft 365 Modern Desktop Administrator Associate - Boot Camp [-]
Les mer
Oslo 5 dager 27 900 kr
03 Nov
03 Nov
ISO 27032 Lead Cybersecurity Manager [+]
ISO 27032 Lead Cybersecurity Manager [-]
Les mer
2 dager 7 500 kr
Etter fullført kurs skal du beherske Photoshop, og kjenne til programmets muligheter og funksjoner. [+]
Dette er kurset for deg som har jobbet en del i Photoshop og er klar for å utnytte programmet kreative muligheter enda mer. Målet med Photoshop videregående kurs er at du skal lære å utnytte bruk av lag, kanaler, markering, masker og masker på farger og justeringer for å få kreative og effektfulle bilder. Dette kurset er for deg som har erfaring i Adobe Photoshop og er klar for å utnytte programmets mer kreative muligheter.  Effektiv bruk av lag, kanaler, markeringar och masker samt fargekorrigering for å lage effektfulle bilder. Kurset passer for kreatører, designere, markedsførere og fotografer. Etter fullført kurs skal du beherske Photoshop, og kjenne til programmets muligheter og funksjoner. Forhåndskunnskap: Kurset Photoshop innføring eller tilsvarende kunnskap. Kursinnhold:• Sette sammen flere bilder slik at de fremstår som nye bilder• Kreativ jobbing med lag• Automatisering av repeterende handlinger• Avansert bruk av fargekorrigering• Effektiv jobbing og snarveier• Bruk av tekst med Adobe Typekit• Spennende bruk av filtre og blande­modus [-]
Les mer