IT-kurs
Warwickshire
Du har valgt: Warwick
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Warwick ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to provide best practice guidance on how to set clear, business-based targets for service utility, warranty and experience. [+]
Understand the purpose and key concepts of Information Security Management, elucidating its significance in safeguarding the confidentiality, integrity, and availability of organisational information assets. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Virtuelt eller personlig 1 dag 5 950 kr
Gir alle deltakere i et prosjekt innsyn til å oppdatere data uansett programvare, tid og sted. [+]
  Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Navisworks grunnkurs   Her er et utvalg av temaene du vil lære på kurset: forstå hvordan tverrfaglige modeller settes sammen analysere modellen gjennom visualisering og navigering håndtering av objekter sette inn målsetting legg inn snitt finne informasjon på objektene Navisworks håndterer et stort antall filformater og det er viktig å forstå hvordan tverrfaglige modeller settes sammen slik at dette muligjør analyse av modellen gjennom visualisering, navigering, håndtering av objekter, sette inn målsetting, legge inn snitt og finne informasjon på objektene.   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
Virtuelt eller personlig 1 dag 6 500 kr
Kurset passer for deg som har god erfaring i generell bruk av Revit og som skal prosjektere og utføre hydrauliske beregninger på sprinkleranlegg. [+]
Her er et utvalg av temaene du vil lære på kurset: Oppsett av nytt sprinklerprosjekt i Revit Prosjektering av sprinkleranlegg Behandling av rørtyper, systemer etc Lage egne produkter for sprinklerhoder og andre produkter Hydrauliske beregninger IFC-eksport Oppsett av tegninger [-]
Les mer
Virtuelt klasserom 3 dager 22 500 kr
30 Sep
02 Dec
Due to the Coronavirus the course instructor is not able to come to Oslo. As an alternative we offer this course as a Blended Virtual Course. [+]
Blended Virtual CourseThe course is a hybrid of virtual training and self-study which will be a mixture of teaching using Microsoft Teams for short bursts at the beginning of the day, then setting work for the rest of the day and then coming back at the end of the day for another on-line session for any questions before setting homework in the form of practice exams for the evening. You do not have to install Microsoft Teams, you will receive a link and can access the course using the web browser.  Remote proctored examTake your exam from any location. Read about iSQI remote proctored exam here Requirements for the exam: The exam will be using Google Chrome and there is a plug-in that needs to be installed  You will need a laptop/PC with a camera and a microphone  A current ID with a picture    KursinnholdDette kurset forklarer det grunnleggende i softwaretesting. Det er basert på ISTQB- pensum og er akkreditert av BCS.    Kurset inneholder øvelser, prøveeksamener og spill for å fremheve sentrale deler av pensum. Dette sammen med kursmateriell og presentasjoner vil bistå i forståelse av begreper og metoder som blir presentert.   Bouvet sine kursdeltakeres testresultater vs ISTQB gjennomsnitt   «Særs godt kurs med mye fokus på praktiske oppgaver som gjør læring vesentlig lettere. Engasjert kursleder hjelper også. Kursleder starter på et nivå som alle føler seg komfortabel med.» Alexander Røstum Course content Fundamentals of Testing This section looks at why testing is necessary, what testing is, and explains general testing principles, the fundamental test process, and psychological aspects of testing.   Skills Gained • Learn about the differences between the testing levels and targets• Know how to apply both black and white box approaches to all levels of testing• Understand the differences between the various types of review and be aware of Static Analysis• Learn aspects of test planning, estimation, monitoring and control• Communicate better through understanding standard definitions of terms• Gain knowledge of the different types of testing tools and the best way of implementing those tools   Testing throughout the software lifecycle Explains the relationship between testing and life cycle development models, including the V-model and iterative development. Outlines four levels of testing:• Component testing• Integration testing• System testing• Acceptance testing Describes four test types, the targets of testing:• functional• non-functional characteristics• structural• change-related Outlines the role of testing in maintenance.   Static Techniques Explains the differences between the various types of review, and outlines the characteristics of a formal review. Describes how static analysis can find defects.   Test Design Techniques This section explains how to identify test conditions (things to test) and how to design test cases and procedures. It also explains the difference between white and black box testing. The following techniques are described in some detail with practical exercises :• Equivalence Partitioning• Boundary Value Analysis• Decision Tables• State Transition testing• Statement and Decision testingIn addition, use case testing and experience-based testing (such as exploratory testing) are described, and advice is given on choosing techniques.   Test Management This section looks at organisational implications for testing and describes test planning and estimation, test monitoring and control. The relationship of testing and risk is covered,and configuration management and incident management.   Tool Support for Testing Different types of tool support for testing are described throughout the course. This session summarises them, and discusses how to use them effectively and how best to introduce a new tool.   The Exam The ISTQB Foundation exam is a 1-hour, 40 question multiple choice exam. There is an extra 15 minutes allowed for candidates whose first language is not English.The pass mark is 65% (26/40) and there are no pre requisites to taking this exam.The exam is a remote proctored exam [-]
Les mer
Oslo 4 dager 23 900 kr
30 Sep
30 Sep
16 Dec
Vue.js, Vuex & Router Course [+]
Vue.js, Vuex & Router Course [-]
Les mer
Virtuelt klasserom 5 dager 28 500 kr
This course covers three central elements of Microsoft 365 enterprise administration – Microsoft 365 security management, Microsoft 365 compliance management, and Microso... [+]
 In Microsoft 365 security management, you will examine all the common types of threat vectors and data breaches facing organizations today, and you will learn how Microsoft 365’s security solutions address these security threats. Global Knowledge will introduce you to the Microsoft Secure Score, as well as to Azure Active Directory Identity Protection. You will then learn how to manage the Microsoft 365 security services, including Exchange Online Protection, Advanced Threat Protection, Safe Attachments, and Safe Links. Finally, you will be introduced to the various reports that monitor your security health. You will then transition from security services to threat intelligence; specifically, using the Security Dashboard and Advanced Threat Analytics to stay ahead of potential security breaches. TARGET AUDIENCE This course is designed for persons who are aspiring to the Microsoft 365 Enterprise Admin role and have completed one of the Microsoft 365 work load administrator certification paths. COURSE OBJECTIVES By actively participating in this course, you will learn about the following: Microsoft 365 Security Metrics Microsoft 365 Security Services Microsoft 365 Threat Intelligence Data Governance in Microsoft 365 Archiving and Retention in Office 365 Data Governance in Microsoft 365 Intelligence Search and Investigations Device Management Windows 10 Deployment Strategies Mobile Device Management COURSE CONTENT Module 1: Introduction to Microsoft 365 Security Metrics Threat Vectors and Data Breaches Security Solutions in Microsoft 365 Introduction to the Secure Score Introduction to Azure Active Directory Identity Protection Module 2: Managing Your Microsoft 365 Security Services Introduction to Exchange Online Protection Introduction to Advanced Threat Protection Managing Safe Attachments Managing Safe Links Monitoring and Reports Module 3: Lab 1 - Manage Microsoft 365 Security Services Exercise 1 - Set up a Microsoft 365 Trial Tenant Exercise 2 - Implement an ATP Safe Links policy and Safe Attachment policy Module 4: Microsoft 365 Threat Intelligence Overview of Microsoft 365 Threat Intelligence Using the Security Dashboard Configuring Advanced Threat Analytics Implementing Your Cloud Application Security Module 5: Lab 2 - Implement Alert Notifications Using the Security Dashboard Exercise 1 - Prepare for implementing Alert Policies Exercise 2 - Implement Security Alert Notifications Exercise 3 - Implement Group Alerts Exercise 4 - Implement eDiscovery Alerts Module 6: Introduction to Data Governance in Microsoft 365 Introduction to Archiving in Microsoft 365 Introduction to Retention in Microsoft 365 Introduction to Information Rights Management Introduction to Secure Multipurpose Internet Mail Extension Introduction to Office 365 Message Encryption Introduction to Data Loss Prevention Module 7: Archiving and Retention in Office 365 In-Place Records Management in SharePoint Archiving and Retention in Exchange Retention Policies in the SCC Module 8: Lab 3 - Implement Archiving and Retention Exercise 1 - Initialize Compliance in Your Organization Exercise 2 - Configure Retention Tags and Policies Exercise 3 - Implement Retention Policies Module 9: Implementing Data Governance in Microsoft 365 Intelligence Planning Your Security and Complaince Needs Building Ethical Walls in Exchange Online Creating a Simple DLP Policy from a Built-in Template Creating a Custom DLP Policy Creating a DLP Policy to Protect Documents Working with Policy Tips Module 10: Lab 4 - Implement DLP Policies Exercise 1 - Manage DLP Policies Exercise 2 - Test MRM and DLP Policies Module 11: Managing Data Governance in Microsoft 365 Managing Retention in Email Troubleshooting Data Governance Implementing Azure Information Protection Implementing Advanced Features of AIP Implementing Windows Information Protection Module 12: Lab 5 - Implement AIP and WIP Exercise 1 - Implement Azure Information Protection Exercise 2 - Implement Windows Information Protection Module 13: Managing Search and Investigations Searching for Content in the Security and Compliance Center Auditing Log Investigations Managing Advanced eDiscovery Module 14: Lab 6 - Manage Search and Investigations Exercise 1 - Investigate Your Microsoft 365 Data Exercise 2 - Configure and Deploy a Data Subject Request Module 15: Planning for Device Management Introduction to Co-management Preparing Your Windows 10 Devices for Co-management Transitioning from Configuration Manager to Intune Introduction to Microsoft Store for Business Planning for Mobile Application Management Module 16: Lab 7 - Implement the Microsoft Store for Business Exercise 1 - Configure the Microsoft Store for Business Exercise 2 - Manage the Microsoft Store for Business Module 17: Planning Your Windows 10 Deployment Strategy Windows 10 Deployment Scenarios Implementing Windows Autopilot Planning Your Windows 10 Subscription Activation Strategy Resolving Windows 10 Upgrade Errors Introduction to Windows Analytics Module 18: Implementing Mobile Device Management Planning Mobile Device Management Deploying Mobile Device Management Enrolling Devices to MDM Managing Device Compliance Module 19: Lab 8 - Manage Devices with Intune Exercise 1 - Enable Device Management Exercise 2 - Configure Azure AD for Intune Exercise 3 - Create Intune Policies Exercise 4 - Enroll a Windows 10 Device Exercise 5 - Manage and Monitor a Device in Intune TEST CERTIFICATION This course helps you to prepare for exam MS101. [-]
Les mer
Arne Rettedals Hus 3 timer 3 200 kr
15 Oct
OneNote er et program fra Microsoft som gir deg mulighet til å digitalisere dine notater, og på kurset viser vi deg hvordan du jobber med opprettelse og oppbygning av not... [+]
OneNote er et program fra Microsoft som gir deg mulighet til å digitalisere dine notater. Programmet egner seg særlig for deg som har behov for å skrive møtenotater, foredragsnotater og arbeidsnotater. OneNote vil synkronisere dine notater på tvers av dine enheter, og kan benyttes på din PC, din smarttelefon eller nettbrett. Du kan bygge inn tekst og filer fra Outlook, Word, Excel og PowerPoint, samt film- og lydfiler. Har du oversikten over notater etter at møter er over? Føler du at de papirbaserte notatene over tid blir uoversiktlige og lite tilgjengelige. Du kan jobbe raskere, smartere og bedre ved å ta i bruk OneNote. I dine digitale notater i OneNote kan du inkludere tekst, bilder, lenker til filer og websider, lyd og film. Du kan ta notater fra din smarttelefon, ditt nettbrett eller din PC; alt etter hva du har tilgjengelig. Systemet vil synkronisere notatene på tvers av dine enheter. OneNote er en del av Microsoft Office og er tilgjengelig gratis for alle.  Kurset kan spesialtilpasses og holdes bedriftsinternt i deres eller våre lokaler. Deltakere må ha med egen datamaskin med relevant programvare. 6 gode grunner til å delta Du vil se hvor enkelt det er å ta raske notater Lær hvordan du finner igjen notater raskt og effektivt Du vil kunne koble notater til oppgaver i Outlook Lær å holde møtenotater koblet til avtaler og møter i Outlook Få en innføring i hvordan flere kan jobbe samtidig med notater Lær hvordan OneNote kobler lyd/videoopptak med notater Synkroniser dine notater mellom dine enheter (PC, mobil, nettbrett) Forkunnskap: Erfaring i bruk av Microsoft Office. Varighet:3 timer Pris:3200 kroner Ansatte ved UiS har egne betalingsbetingelser. [-]
Les mer
Oslo Bergen Og 1 annet sted 5 dager 27 500 kr
15 Sep
15 Sep
27 Oct
AZ-400: Designing and Implementing Microsoft DevOps solutions [+]
AZ-400: Designing and Implementing Microsoft DevOps solutions [-]
Les mer
Virtuelt klasserom 4 dager 20 000 kr
This four-day instructor-led course is designed for IT professionals who configure advanced Windows Server services using on-premises, hybrid, and cloud technologies. [+]
COURSE OVERVIEW These professionals manage and support an infrastructure that includes on-premises and Azure IaaS-hosted Windows Server-based workloads. The course teaches IT professionals how to leverage the hybrid capabilities of Azure, how to migrate virtual and physical server workloads to Azure IaaS, and how to manage and secure Azure VMs running Windows Server. The course also covers how to perform tasks related to high availability, troubleshooting, and disaster recovery. The course highlights various administrative tools and technologies including Windows Admin Center, PowerShell, Azure Arc, Azure Automation Update Management, Microsoft Defender for Identity, Azure Security Center, Azure Migrate, and Azure Monitor. TARGET AUDIENCE This four-day course is intended for Windows Server Hybrid Administrators who have experience working with Windows Server and want to extend the capabilities of their on-premises environments by combining on-premises and hybrid technologies. Windows Server Hybrid Administrators who already implement and manage on-premises core technologies want to secure and protect their environments, migrate virtual and physical workloads to Azure Iaas, enable a highly available, fully redundant environment, and perform monitoring and troubleshooting. COURSE OBJECTIVES After you complete this course you will be able to: Harden the security configuration of the Windows Server operating system environment. Enhance hybrid security using Azure Security Center, Azure Sentinel, and Windows Update Management. Apply security features to protect critical resources. Implement high availability and disaster recovery solutions. Implement recovery services in hybrid scenarios. Plan and implement hybrid and cloud-only migration, backup, and recovery scenarios. Perform upgrades and migration related to AD DS, and storage. Manage and monitor hybrid scenarios using WAC, Azure Arc, Azure Automation and Azure Monitor. Implement service monitoring and performance monitoring, and apply troubleshooting. COURSE CONTENT Module 1: Windows Server security This module discusses how to protect an Active Directory environment by securing user accounts to least privilege and placing them in the Protected Users group. The module covers how to limit authentication scope and remediate potentially insecure accounts. The module also describes how to harden the security configuration of a Windows Server operating system environment. In addition, the module discusses the use of Windows Server Update Services to deploy operating system updates to computers on the network. Finally, the module covers how to secure Windows Server DNS to help protect the network name resolution infrastructure. Lessons for module 1 Secure Windows Sever user accounts Hardening Windows Server Windows Server Update Management Secure Windows Server DNS Lab : Configuring security in Windows Server Configuring Windows Defender Credential Guard Locating problematic accounts Implementing LAPS After completing module 1, students will be able to: Diagnose and remediate potential security vulnerabilities in Windows Server resources. Harden the security configuration of the Windows Server operating system environment. Deploy operating system updates to computers on a network by using Windows Server Update Services. Secure Windows Server DNS to help protect the network name resolution infrastructure. Implement DNS policies. Module 2: Implementing security solutions in hybrid scenarios This module describes how to secure on-premises Windows Server resources and Azure IaaS workloads. The module covers how to improve the network security for Windows Server infrastructure as a service (IaaS) virtual machines (VMs) and how to diagnose network security issues with those VMs. In addition, the module introduces Azure Security Center and explains how to onboard Windows Server computers to Security Center. The module also describes how to enable Azure Update Management, deploy updates, review an update assessment, and manage updates for Azure VMs. The modules explains how Adaptive application controls and BitLocker disk encryption are used to protect Windows Server IaaS VMs. Finally, the module explains how to monitor Windows Server Azure IaaS VMs for changes in files and the registry, as well as monitoring modifications made to application software. Lessons for module 2 Implement Windows Server IaaS VM network security. Audit the security of Windows Server IaaS Virtual Machines Manage Azure updates Create and implement application allowlists with adaptive application control Configure BitLocker disk encryption for Windows IaaS Virtual Machines Implement change tracking and file integrity monitoring for Windows Server IaaS VMs Lab : Using Azure Security Center in hybrid scenarios Provisioning Azure VMs running Windows Server Configuring Azure Security Center Onboarding on-premises Windows Server into Azure Security Center Verifying the hybrid capabilities of Azure Security Center Configuring Windows Server 2019 security in Azure VMs After completing module 2, students will be able to: Diagnose network security issues in Windows Server IaaS virtual machines. Onboard Windows Server computers to Azure Security Center. Deploy and manage updates for Azure VMs by enabling Azure Automation Update Management. Implement Adaptive application controls to protect Windows Server IaaS VMs. Configure Azure Disk Encryption for Windows IaaS virtual machines (VMs). Back up and recover encrypted data. Monitor Windows Server Azure IaaS VMs for changes in files and the registry. Module 3: Implementing high availability This module describes technologies and options to create a highly available Windows Server environment. The module introduces Clustered Shared Volumes for shared storage access across multiple cluster nodes. The module also highlights failover clustering, stretch clusters, and cluster sets for implementing high availability of Windows Server workloads. The module then discusses high availability provisions for Hyper-V and Windows Server VMs, such as network load balancing, live migration, and storage migration. The module also covers high availability options for shares hosted on Windows Server file servers. Finally, the module describes how to implement scaling for virtual machine scale sets and load-balanced VMs, and how to implement Azure Site Recovery. Lessons for module 3 Introduction to Cluster Shared Volumes. Implement Windows Server failover clustering. Implement high availability of Windows Server VMs. Implement Windows Server File Server high availability. Implement scale and high availability with Windows Server VMs. Lab : Implementing failover clustering Configuring iSCSI storage Configuring a failover cluster Deploying and configuring a highly available file server Validating the deployment of the highly available file server After completing module 3, students will be able to: Implement highly available storage volumes by using Clustered Share Volumes. Implement highly available Windows Server workloads using failover clustering. Describe Hyper-V VMs load balancing. Implement Hyper-V VMs live migration and Hyper-V VMs storage migration. Describe Windows Server File Server high availablity options. Implement scaling for virtual machine scale sets and load-balanced VMs. Implement Azure Site Recovery. Module 4: Disaster recovery in Windows Server This module introduces Hyper-V Replica as a business continuity and disaster recovery solution for a virtual environment. The module discusses Hyper-V Replica scenarios and use cases, and prerequisites to use it. The module also discusses how to implement Azure Site Recovery in on-premises scenarios to recover from disasters. Lessons for module 4 Implement Hyper-V Replica Protect your on-premises infrastructure from disasters with Azure Site Recovery Lab : Implementing Hyper-V Replica and Windows Server Backup Implementing Hyper-V Replica Implementing backup and restore with Windows Server Backup After completing module 4, students will be able to: Describe Hyper-V Replica, pre-requisites for its use, and its high-level architecture and components Describe Hyper-V Replica use cases and security considerations. Configure Hyper-V Replica settings, health monitoring, and failover options. Describe extended replication. Replicate, failover, and failback virtual machines and physical servers with Azure Site Recovery. Module 5: Implementing recovery services in hybrid scenarios This module covers tools and technologies for implementing disaster recovery in hybrid scenarios, whereas the previous module focus on BCDR solutions for on-premises scenarios. The module begins with Azure Backup as a service to protect files and folders before highlighting how to implementRecovery Vaults and Azure Backup Policies. The module describes how to recover Windows IaaS virtual machines, perform backup and restore of on-premises workloads, and manage Azure VM backups. The modules also covers how to provide disaster recovery for Azure infrastructure by managing and orchestrating replication, failover, and failback of Azure virtual machines with Azure Site Recovery. Lessons for module 5 Implement hybrid backup and recovery with Windows Server IaaS Protect your Azure infrastructure with Azure Site Recovery Protect your virtual machines by using Azure Backup Lab : Implementing Azure-based recovery services Implementing the lab environment Creating and configuring an Azure Site Recovery vault Implementing Hyper-V VM protection by using Azure Site Recovery vault Implementing Azure Backup After completing module 5, students will be able to: Recover Windows Server IaaS virtual machines by using Azure Backup. Use Azure Backup to help protect the data for on-premises servers and virtualized workloads. Implement Recovery Vaults and Azure Backup policies. Protect Azure VMs with Azure Site Recovery. Run a disaster recovery drill to validate protection. Failover and failback Azure virtual machines. Module 6: Upgrade and migrate in Windows Server This module discusses approaches to migrating Windows Server workloads running in earlier versions of Windows Server to more current versions. The module covers the necessary strategies needed to move domain controllers to Windows Server 2022 and describes how the Active Directory Migration Tool can consolidate domains within a forest or migrate domains to a new AD DS forest. The module also discusses the use of Storage Migration Service to migrate files and files shares from existing file servers to new servers running Windows Server 2022. Finally, the module covers how to install and use the Windows Server Migration Tools cmdlets to migrate commonly used server roles from earlier versions of Windows Server. Lessons for module 6 Active Directory Domain Services migration Migrate file server workloads using Storage Migration Service Migrate Windows Server roles Lab : Migrating Windows Server workloads to IaaS VMs Deploying AD DS domain controllers in Azure Migrating file server shares by using Storage Migration Service After completing module 6, students will be able to: Compare upgrading an AD DS forest and migrating to a new AD DS forest. Describe the Active Directory Migration Tool (ADMT). Identify the requirements and considerations for using Storage Migration Service. Describe how to migrate a server with storage migration. Use the Windows Server Migration Tools to migrate specific Windows Server roles. Module 7: Implementing migration in hybrid scenarios This module discusses approaches to migrating workloads running in Windows Server to an infrastructure as a service (IaaS) virtual machine. The module introduces using Azure Migrate to assess and migrate on-premises Windows Server instances to Microsoft Azure. The module also covers how migrate a workload running in Windows Server to an infrastructure as a service (IaaS) virtual machine (VM) and to Windows Server 2022 by using Windows Server migration tools or the Storage Migration Service. Finally, this module describes how to use the Azure Migrate App Containerization tool to containerize and migrate ASP.NET applications to Azure App Service. Lessons for module 7 Migrate on-premises Windows Server instances to Azure IaaS virtual machines Upgrade and migrate Windows Server IaaS virtual machines Containerize and migrate ASP.NET applications to Azure App Service Lab : Migrating on-premises VMs servers to IaaS VMs Implementing assessment and discovery of Hyper-V VMs using Azure Migrate Implementing migration of Hyper-V workloads using Azure Migrate After completing module 7, students will be able to: Plan a migration strategy and choose the appropriate migration tools. Perform server assessment and discovery using Azure Migrate. Migrate Windows Server workloads to Azure VM workloads using Azure Migrate. Explain how to migrate workloads using Windows Server Migration tools. Migrate file servers by using the Storage Migration Service. Discover and containerize ASP.NET applcations running on Windows. Migrate a containerized application to Azure App Service. Module 8: Server and performance monitoring in Windows Server This module introduces a range of tools to monitor the operating system and applications on a Windows Server computer as well as describing how to configure a system to optimize efficiency and to troublshoot problems. The module covers how Event Viewer provides a convenient and accessible location for observing events that occur, and how to interpret the data in the event log. The module also covers how to audit and diagnose a Windows Server environment for regulatory compliance, user activity, and troubleshooting. Finally, the module explains how to troubleshoot AD DS service failures or degraded performance, including recovery of deleted objects and the AD DS database, and how to troubleshoot hybrid authentication issues. Lessons for module 8 Monitor Windows Server performance Manage and monitor Windows Server event logs Implement Windows Server auditing and diagnostics Troubleshoot Active Directory Lab : Monitoring and troubleshooting Windows Server Establishing a performance baseline Identifying the source of a performance problem Viewing and configuring centralized event logs After completing module 8, students will be able to: Explain the fundamentals of server performance tuning. Use built-in tools in Windows Server to monitor server performance. Use Server Manager and Windows Admin Center to review event logs. Implement custom views. Configure an event subscription. Audit Windows Server events. Configure Windows Server to record diagnostic information. Recover the AD DS database and objects in AD DS. Troubleshoot AD DS replication. Troubleshoot hybrid authentication issues. Module 9: Implementing operational monitoring in hybrid scenarios This module covers using monitoring and troubleshooing tools, processes, and best practices to streamline app performance and availabilty of Windows Server IaaS VMs and hybrid instances. The module describes how to implement Azure Monitor for IaaS VMs in Azure, implement Azure Monitor in on-premises environments, and use dependency maps. The module then explains how to enable diagnostics to get data about a VM, and how to view VM metrics in Azure Metrics Explorer, and how to create a metric alert to monitor VM performance. The module then covers how to monitor VM performance by using Azure Monitor VM Insights. The module then describes various aspects of troubleshooting on premises and hybrid network connectivity, including how to diagnose common issues with DHCP, name resolution, IP configuration, and routing. Finally, the module examines how to troubleshoot configuration issues that impact connectivity to Azure-hosted Windows Server virtual machines (VMs), as well as approaches to resolve issues with VM startup, extensions, performance, storage, and encryption. Lessons for module 9 Monitor Windows Server IaaS Virtual Machines and hybrid instances Monitor the health of your Azure virtual machines by using Azure Metrics Explorer and metric alerts Monitor performance of virtual machines by using Azure Monitor VM Insights Troubleshoot on-premises and hybrid networking Troubleshoot Windows Server Virtual Machines in Azure Lab : Monitoring and troubleshooting of IaaS VMs running Windows Server Enabling Azure Monitor for virtual machines Setting up a VM with boot diagnostics Setting up a Log Analytics workspace and Azure Monitor VM Insights After completing module 9, students will be able to: Implement Azure Monitor for IaaS VMs in Azure and in on-premises environments. Implement Azure Monitor for IaaS VMs in Azure and in on-premises environments. View VM metrics in Azure Metrics Explorer. Use monitoring data to diagnose problems. Evaluate Azure Monitor Logs and configure Azure Monitor VM Insights. Configure a Log Analytics workspace. Troubleshoot on-premises connectivity and hybrid network connectivity. Troubleshoot AD DS service failures or degraded performance. Recover deleted security objects and the AD DS database. Troubleshoot hybrid authentication issues. [-]
Les mer
Nettkurs 3 timer 549 kr
Dette nettkurset er perfekt for deg som allerede har noen grunnleggende ferdigheter i Python og ønsker å lære objektorientert programmering (OOP). Med OOP vil du kunne re... [+]
Dette nettkurset fokuserer på objektorientert programmering (OOP) i Python og er ideelt for de som allerede har grunnleggende ferdigheter i Python og ønsker å utvide sine kunnskaper. OOP gir deg muligheten til å skrive kode som er mer strukturert, gjenbrukbar og enklere å vedlikeholde. Kurset, ledet av erfaren systemutvikler og instruktør Magnus Kvendseth Øye, vil veilede deg gjennom nøkkelkonsepter innen OOP i Python. I løpet av kurset vil du lære å se på koden din som en samling av dynamiske objekter som samhandler med hverandre. Du vil utforske følgende emner: Kapittel 1: Introduksjon Kapittel 2: Klasser og egenskaper Kapittel 3: Metoder Kapittel 4: Representasjon Kapittel 5: Arv Kapittel 6: Prosjekt Kapittel 7: Avslutning Med Magnus Kvendseth Øye som din veileder, vil du få en solid forståelse av hvordan du kan bruke OOP-prinsipper i Python for å skape ren, effektiv og strukturert kode. Dette kurset gir deg muligheten til å ta dine Python-ferdigheter til neste nivå.   Varighet: 3 timer og 8 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led class provides an overview of Google Cloud Platform products and services. Through a combination of presentations and hands-on labs, participa... [+]
Objectives This course teaches participants the following skills: Identify the purpose and value of each of the Google Cloud Platform products and services Interact with Google Cloud Platform services Describe ways in which customers have used Google Cloud Platform Choose among and use application deployment environments on Google Cloud Platform: Google App Engine, Google Kubernetes Engine, and Google Compute Engine Choose among and use Google Cloud Platform storage options: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore Make basic use of BigQuery, Google’s managed data warehouse for analytics Make basic use of Cloud Deployment Manager, Google’s tool for creating and managing cloud resources through templates Make basic use of Google Stackdriver, Google’s monitoring, logging, and diagnostics system All courses will be delivered in partnership with ROI Training, Google Cloud Premier Partner, using a Google Authorized Trainer. Course Outline Module 1: Introducing Google Cloud Platform -Explain the advantages of Google Cloud Platform-Define the components of Google's network infrastructure, including: Points of presence, data centers, regions, and zones-Understand the difference between Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) Module 2: Getting Started with Google Cloud Platform -Identify the purpose of projects on Google Cloud Platform-Understand the purpose of and use cases for Identity and Access Management-List the methods of interacting with Google Cloud Platform-Lab: Getting Started with Google Cloud Platform Module 3: Virtual Machines and Networks in the Cloud -Identify the purpose of and use cases for Google Compute Engine.-Understand the various Google Cloud Platform networking and operational tools and services.-Lab: Compute Engine Module 4: Storage in the Cloud -Understand the purpose of and use cases for: Google Cloud Storage, Google Cloud SQL, Google Cloud Bigtable, and Google Cloud Datastore.-Learn how to choose between the various storage options on Google Cloud Platform.-Lab: Cloud Storage and Cloud SQL Module 5: Containers in the Cloud -Define the concept of a container and identify uses for containers.-Identify the purpose of and use cases for Google Kubernetes Engine and Kubernetes.-Lab: Kubernetes Engine Module 6: Applications in the Cloud -Understand the purpose of and use cases for Google App Engine.-Contrast the App Engine Standard environment with the App Engine Flexible environment.-Understand the purpose of and use cases for Google Cloud Endpoints.-Lab: App Engine Module 7: Developing, Deploying, and Monitoring in the Cloud -Understand options for software developers to host their source code.-Understand the purpose of template-based creation and management of resources.-Understand the purpose of integrated monitoring, alerting, and debugging.-Lab: Deployment Manager and Stackdriver Module 8: Big Data and Machine Learning in the Cloud -Understand the purpose of and use cases for the products and services in the Google Cloud big data and machine learning platforms.-Lab: BigQuery [-]
Les mer
Nettkurs 3 timer 549 kr
God formatering handler ikke bare om å få et regneark til å se pent ut, det handler like mye om å kommunisere effektivt. Et dårlig formatert regneark vil gjøre det vanske... [+]
God formatering i Microsoft Excel handler ikke bare om å få et regneark til å se pent ut; det handler like mye om å kommunisere effektivt. Et dårlig formatert regneark kan gjøre det vanskelig å lese og forstå innholdet. Derimot vil et godt formatert regneark gjøre det enklere å absorbere informasjonen som presenteres. Dette kurset, ledet av Espen Faugstad, vil gi deg ferdighetene du trenger for å formatere data i Microsoft Excel på avansert nivå. Du vil lære hvordan du gjør regnearket mer leselig, forståelig og effektivt. Emner inkluderer formatering av tekstverdier og tallverdier, opprettelse av egendefinerte formateringsregler, tilpasning av rader, kolonner og celler, formatering av tabeller, diagrammer og bilder, og mye mer. Kurset er delt inn i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Skrift Kapittel 3: Justering Kapittel 4: Tall Kapittel 5: Stiler Kapittel 6: Celler Kapittel 7: Tabell Kapittel 8: Diagrammer Kapittel 9: Bilder Kapittel 10: Avslutning Etter å ha fullført kurset, vil du kunne bruke avansert formatering i Excel for å forbedre presentasjonen og lesbarheten av dine regneark, noe som er uvurderlig for effektiv kommunikasjon og dataanalyse.   Varighet: 2 timer og 27 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Bedriftsintern 1 dag 11 000 kr
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform. [+]
Through a combination of presentations, demos, and hands-on labs, participants get an overview of the Google Cloud platform and a detailed view of the data processing and machine learning capabilities. This course showcases the ease, flexibility, and power of big data solutions on Google Cloud Platform. Learning Objectives This course teaches participants the following skills: Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform Use Cloud SQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform Employ BigQuery and Cloud Datalab to carry out interactive data analysis Train and use a neural network using TensorFlow Employ ML APIs Choose between different data processing products on the Google Cloud Platform Course Outline Module 1: Introducing Google Cloud Platform -Google Platform Fundamentals Overview-Google Cloud Platform Big Data Products Module 2: Compute and Storage Fundamentals -CPUs on demand (Compute Engine)-A global filesystem (Cloud Storage)-CloudShell-Lab: Set up an Ingest-Transform-Publish data processing pipeline Module 3: Data Analytics on the Cloud -Stepping-stones to the cloud-CloudSQL: your SQL database on the cloud-Lab: Importing data into CloudSQL and running queries-Spark on Dataproc-Lab: Machine Learning Recommendations with Spark on Dataproc Module 4: Scaling Data Analysis -Fast random access-Datalab-BigQuery-Lab: Build machine learning dataset Module 5: Machine Learning -Machine Learning with TensorFlow-Lab: Carry out ML with TensorFlow-Pre-built models for common needs-Lab: Employ ML APIs Module 6: Data Processing Architectures -Message-oriented architectures with Pub/Sub-Creating pipelines with Dataflow-Reference architecture for real-time and batch data processing Module 7: Summary -Why GCP?-Where to go from here-Additional Resources [-]
Les mer
Nettkurs 1 time 549 kr
En pivottabell er et kraftig verktøy i Microsoft Excel som gjør at du kan beregne, summere og analysere store mengder data på en rask og effektiv måte. En pivottabell kan... [+]
En pivottabell er et kraftig verktøy i Microsoft Excel som gjør at du kan beregne, summere og analysere store mengder data på en rask og effektiv måte. En pivottabell kan brukes til å analysere numeriske data og til å besvare uventede spørsmål om dataen. Kort fortalt, en pivottabell hjelper deg med å ta informerte beslutninger basert på funnene i dataene dine. I dette kurset, ledet av Espen Faugstad, vil du lære alt du trenger å vite for å jobbe med pivottabeller i Microsoft Excel. Kurset vil dekke hva en pivottabell er, hvordan du klargjør data, organiserer data, formaterer data, presenterer data, og mye mer. For å ta dette kurset, bør du ha grunnleggende forståelse av Microsoft Excel. Kurset er strukturert i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Grunnleggende Kapittel 3: Viderekommen Kapittel 4: Avslutning Etter å ha fullført kurset vil du være i stand til å bruke pivottabeller til å analysere data, trekke innsikter og ta informerte beslutninger basert på dataene i Excel.   Varighet: 1 time   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer