IT-kurs
Du har valgt: Østfold
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Østfold ) i IT-kurs
 

Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to move new or changed hardware, software, documentation, processes, or any other component to live environments, and how to deploy components to other environm... [+]
Understand the purpose and key concepts of Deployment Management, highlighting its importance in managing the deployment of new or changed services into the live environment. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours of content   Mobile-optimised   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn to deliver an agreed quality of service by handling all predefined, user-initiated service requests in an effective and user-friendly manner. [+]
Understand the purpose and key concepts of the Continual Improvement Practice, elucidating its significance in fostering a culture of ongoing improvement and innovation within the organisation. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to plan and manage the full lifecycle of all IT assets to help your organisation maximise value, control costs, and manage risks related to the purchase, use, a... [+]
Understand the purpose and key concepts of IT Asset Management, elucidating its significance in managing and optimising the lifecycle of IT assets to maximise value, control costs, and manage risks. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Virtuelt eller personlig 3 dager 11 800 kr
26 Aug
23 Sep
28 Oct
Kurset vil gi en grundig gjennomgang av hovedkommandoene i AutoCAD. Deltagerne vil også få nødvendig forståelse for prinsipper og arbeidsmetoder i programmet. [+]
Kurset vil gi deg en grunnleggende forståelse i bruk av tegne- og konstruksjonsprogrammet AutoCAD. AutoCAD 2D Grunnkurs:• Hovedprinsipper i AutoCAD's brukergrensesnitt• Oppretting og lagring av tegninger• Tegne- og editeringskommandoer• Hjelpefunksjoner for å tegne nøyaktig• Skjermstyring• Lagoppbygging og struktur• Målsetting, teksting og skravering• Symbol- og blokkhåndtering• Layout/plotting   Etter gjennomført kurs skal kursdeltagerne bl.a. kunne bruke AutoCAD til å: • Opprette tegninger• Utføre de vanligste tegne- og editeringsfunksjoner• Bruke og forstå lagoppbygging• Målsette og påføre tekst• Skrive ut tegning i målestokk  [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Virtuelt klasserom 5 dager 35 000 kr
Successful completion of this five-day, instructor-led course should enhance the student’s understanding of configuring and managing Palo Alto Networks Next-Generation Fi... [+]
COURSE OVERVIEW The course includes hands-on experience configuring, managing, and monitoring a firewall in a lab environment TARGET AUDIENCE This course is aimed at Security Engineers, Security Administrators, Security Operations Specialists, Security Analysts, and Support Staff. COURSE OBJECTIVES After you complete this course, you will be able to: Configure and manage the essential features of Palo Alto Networks next-generation firewalls Configure and manage Security and NAT policies to enable approved traffic to and from zones Configure and manage Threat Prevention strategies to block traffic from known and unknown IP addresses, domains, and URLs Monitor network traffic using the interactive web interface and firewall reports COURSE CONTENT 1 - Palo Alto Networks Portfolio and Architecture 2 - Configuring Initial Firewall Settings 3 - Managing Firewall Configurations 4 - Managing Firewall Administrator Accounts 5 - Connecting the Firewall to Production Networks with Security Zones 6 - Creating and Managing Security Policy Rules 7 - Creating and Managing NAT Policy Rules 8 - Controlling Application Usage with App-ID 9 - Blocking Known Threats Using Security Profiles 10 - Blocking Inappropriate Web Traffic with URL Filtering 11 - Blocking Unknown Threats with Wildfire 12 - Controlling Access to Network Resources with User-ID 13 - Using Decryption to Block Threats in Encrypted Traffic 14 - Locating Valuable Information Using Logs and Reports 15 - What's Next in Your Training and Certification Journey Supplemental Materials Securing Endpoints with GlobalProtect Providing Firewall Redundancy with High Availability Connecting Remotes Sites using VPNs Blocking Common Attacks Using Zone Protection   FURTHER INFORMATION Level: Introductory Duration: 5 days Format: Lecture and hands-on labs Platform support: Palo Alto Networks next-generation firewalls running PAN-OS® operating system version 11.0     [-]
Les mer
Virtuelt eller personlig 2 dager 9 900 kr
Autodesk Nastran In-CAD – Grunnkurs får deg godt i gang med Nastan In-CAD og finite element (FE) beregninger. [+]
Fleksible kurs for fremtidenNy kunnskap skal gi umiddelbar effekt, og samtidig være holdbar og bærekraftig på lang sikt. NTI AS har 30 års erfaring innen kurs og kompetanseheving, og utdanner årlig rundt 10.000 personer i Nord Europa innen CAD, BIM, industri, design og konstruksjon.   Her er et utvalg av temaene du vil lære på kurset: Generelt om Nastran In-CAD brukergrensesnitt Gjennomgang av hvilke typer FE-analyser som kan utføres med Nastran In-CAD Innføring i opprettelse av beregningsmodeller i Nastran In-CAD Gjennomføre analyser Vurdere beregningsresultater Presentasjon av beregningsresultater Det blir undervist i grunnleggende funksjonalitet og metodikk som gjør at deltakeren kan skape FE-beregningsmodeller med utgangspunkt i 3D-modeller i Inventor. Autodesk Nastan In-CAD – Grunnkurs er et kurs som alle Inventor-brukere bør gjennomføre for å komme i gang med FE-beregninger av konstruksjoner som modelleres i Inventor.   Tilpassete kurs for bedrifterVi vil at kundene våre skal være best på det de gjør - hele tiden.  Derfor tenker vi langsiktig om kompetanseutvikling og ser regelmessig kunnskapsløft som en naturlig del av en virksomhet. Vårt kurskonsept bygger på et moderne sett av ulike læringsmiljøer, som gjør det enkelt å finne riktig løsning uansett behov. Ta kontakt med oss på telefon 483 12 300, epost: salg@nticad.no eller les mer på www.nticad.no [-]
Les mer
1 dag 3 700 kr
Klasseromskurs små klasser maks 5 personer. Kurs kan holdes bedriftinternt i din bedrift, eller også via Zoom. Lær gode regnearkoppsett med formler, funksjoner og diagr..... [+]
Innhold: Bygge opp gode regnearkoppsett med formler, funksjoner og diagrammer. Summere flere regneark. Låse celler. Absolutt celle referanse, parenteser, hvis formler, Pivottabell. Kursholder Marianne Nylund er utdannet systemasvarlig/IKT-rådgiver fra forsvaret,Hun er sertifisert Microsoft-instruktør og har holdtMicrosoft Office-kurs siden 1998. Kursleder er tydelig, pedagogisk og flink til å forklare. Hun engasjerer sine kursdeltakere og gjør det underholdende å delta på våre kurs.Hun er meget tålmodig og tilpasser undervisningen etter hver enkelt deltagers behov, slik at alle skal få et stort utbytte av kursene.   [-]
Les mer
Nettkurs 5 timer 549 kr
JavaScript er et av verdens mest brukte programmeringsspråk som, sammen med HTML og CSS, utgjør grunnsteinene i moderne webutvikling. Selv om språket opprinnelig ble utvi... [+]
JavaScript er et av verdens mest brukte programmeringsspråk som, sammen med HTML og CSS, utgjør grunnsteinene i moderne webutvikling. Selv om språket opprinnelig ble utviklet for bruk på nettet, har det de siste årene både blitt populært som server-språk og som programmeringsspråk for enkeltstående applikasjoner og apper. I dette kurset, ledet av Lars Vidar Nordli, vil du få en grundig introduksjon til JavaScript. Målet er at du etter fullført kurs skal kunne lage dine egne interaktive nettsider. Kurset gir også en innføring i programmering generelt, og du vil lære konsepter som variabler, arrayer, funksjoner, løkker og objekter. Kurset er strukturert i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Variabler Kapittel 3: Conditional statements Kapittel 4: Funksjoner Kapittel 5: Arrays Kapittel 6: Loops Kapittel 7: Manipulere DOM (Document Object Model) Kapittel 8: Events Kapittel 9: Objekter Kapittel 10: Rutiner Kapittel 11: Prosjekt Kapittel 12: Avslutning Etter å ha fullført kurset vil du ha en solid forståelse av JavaScript og være i stand til å bruke det til å lage interaktive nettsider og applikasjoner. Du vil også ha kjennskap til viktige programmeringskonsepter som vil være nyttige i din utviklerkarriere.   Varighet: 5 timer og 1 minutt   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
Oslo 3 dager 20 900 kr
12 Nov
12 Nov
JavaScript Web Development [+]
JavaScript Web Development [-]
Les mer
Virtuelt klasserom 3 timer 1 990 kr
02 Sep
21 Oct
02 Dec
Deltakerne lærer å håndtere lister på en rask og effektiv måte og vi ser også på noen av fordelene ved å gjøre en liste om til en tabell og når en ikke bør gjøre det. Ved... [+]
Kursinnhold Flash Fill Diagrammer Sparkline grafikk Hurtiganalyse Sortering og filtrering Avansert filter Delsammendrag Tabeller Målgruppe Deg som Jobber med lister i Excel Ønsker å effektivisere databehandlingen i Excel Vil ha en kjapp gjennomgang av disse elementene. Har grunnleggende kunnskaper i Excel og ønsker å lære mer. Forkunnskaper Har laget regneark Har kunnskaper tilsvarende «Ta kontroll over regnearket» Det er fordelaktig å ha to skjermer - en til å følge kurset og en til å gjøre det kursholder demonstrerer. Kurset gjennomføres i sanntid med nettundervisning via Teams. Det blir mulighet for å stille spørsmål, ha diskusjoner, demonstrasjoner og øvelser. Du vil motta en invitasjon til Teams fra kursholder. [-]
Les mer
Oslo 1 dag 9 900 kr
18 Aug
18 Aug
ITIL® 4 Practitioner: Relationship Management [+]
ITIL® 4 Practitioner: Relationship Management [-]
Les mer
Klasserom + nettkurs Sentrum 1 dag 4 490 kr
Dette er kurset passer for deg som har grunnleggende Windowskunnskap og som skal begynne og ta i bruk PowerPoint. [+]
Har du lite erfaring med PowerPoint og ønsker en innføring i programmet? På dette kurset lærer du hvordan du lager presentasjoner med bruk av tekst, bilder og ulike oppsett i PowerPoint. Du jobber i ditt eget tempo via et e-læringsprogram, med instruktør tilstede i rommet som hjelper deg om du står fast.   Kursinnhold:   Bli kjent med PowerPoint Oppstart Åpning Visninger Navigering Lagring og lukking Alternativer Egenskaper Hjelpemuligheter   Utforming Utformingsprosessen Nye presentasjoner Nye lysbilder Tema   Tekst Bruk av tekst i presentasjoner Innskriving og redigering Maler Skriftformatering Justering Avstand mellom linjer og avsnitt Punktlister og nummererte lister Angremuligheter Topptekst og bunntekst Tabulatorer Søking og erstatting Stavekontroll Synonymordbok   Bilder og objekter Bruk av bilder Utklipp Bilder fra fil Fotoalbum Video og lyd fra fil Arbeid med objekter Formatering av bilder Import av objekter   Tegning Tegning Koblingslinjer Formatering av objekter WordArt SmartArt   Diagram Utforming av diagram Diagramtyper Diagramelementer Formatering av diagram   Organisasjonskart Utforming av organisasjonskart Formatering av organisasjonskart   Tabeller Utforming av tabeller Merking Innsetting og sletting Radhøyde og kolonnebredde Justering   Utskrift Utskriftsformat Forhåndsvisning og utskrift Eksport av lysbilder til Word   Lysbildeframvisning Animasjoner Egendefinerte animasjoner Lysbildesortering Overgangseffekter Lysbildeframvisning Tilpassede framvisninger Framvisning uavhengig av PowerPoint   Internett og distribusjon Websider Hyperkoblinger Handlingsknapper Elektronisk post PDF- og XPS-format Dokumentinspeksjon Endelig versjon   [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Fysiske medier i bruk i lokalnettverk. Nettverkskomponenter. Design av nettverk (nettverk infrastruktur). Trådløse nettverk, design og sikkerhet. Generelt om forskjellige... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Ingen Innleveringer: For å kunne gå opp til eksamen må 8 utvalgte øvingsoppgaver være godkjente. Personlig veileder: ja Vurderingsform: Skriftlig eksamen, individuell, 3 timer. Ansvarlig: Arne Bjørn Mikalsen Eksamensdato: 16.12.13 / 19.05.14         Læremål: KUNNSKAPERKandidaten:- kan gjøre rede for de mest brukte teknologiene for lokalnettverk- kan gjøre rede for teknisk oppbygning av nettverk- kan gjøre rede for ulike nettverkskomponenter, deres virkemåte og bruksområde- kan planlegge og vurdere sikkerhet i lokalnettverk FERDIGHETER:Kandidaten:- kan koble til og konfigurere en datamaskin slik at den fungerer i et nettverk med internettoppkobling- kan opprette brukerkontoer, tildele rettigheter, samt administrere nettverk med en ressursdatabase- kan planlegge, implementere og konfigurere et mindre lokalnettverk GENERELL KOMPETANSE:Kandidaten:- har kompetanse til selvstendig både å formidle og å ta i bruk sine kunnskaper og ferdigheter innen emnets tema i en driftssituasjon- kan i en praktisk driftssituasjon, forklare og gjøre bruk av sin kunnskap både innen hvert enkelt tema i faget og på tvers av temaene- kan kommunisere med andre om nettverksløsninger Innhold:Fysiske medier i bruk i lokalnettverk. Nettverkskomponenter. Design av nettverk (nettverk infrastruktur). Trådløse nettverk, design og sikkerhet. Generelt om forskjellige typer nettverksoperativsystem. Introduksjon til Active Directory og eDirectory. Prinsipper for konfigurasjon, installasjon, drift og sikkerhet og driftsfilosofi i lokalnettverk. Introduksjon til virtualisering. Driftsmodeller: Fjerndrift eller ASP (Application Service Provider)Les mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Drift av lokalnettverk 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.    [-]
Les mer