Vestfold
Du har valgt: Åsgårdstrand
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Åsgårdstrand )
 

1 dag 9 500 kr
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
Virtuelt klasserom 150 minutter 5 990 kr
04 Sep
Seminaret tar for seg en rekke krevende faser og situasjoner som kan oppstå i forbindelse med styrearbeidet. [+]
Spesialseminar 2: «Generasjonsskifter - utfordringer og løsninger»    Dette spesialseminaret er åpent og kostnadsfritt for alle som er med i styrenettverksgrupper arrangert av Styreforeningen. For andre deltakere som er medlemmer av Styreforeningen koster seminaret kr. 4.990,-.For deltakere som ikke er med i styrenettverksgrupper og som ikke er medlemmer av Styreforeningen er prisen kr. 5.990,-   Seminaret tar for seg en rekke krevende faser og situasjoner som kan oppstå i forbindelse med styrearbeidet. Vi ser blant annet på:   hva undersøkeler som er gjort omkring generasjonsskifteprosesser forteller oss uventet aksjonær bortgang og ulike utfordringer det kan medføre fremtidsfullmakt i forbindelse med aksjeeierskap og aksjeovertakels viktigheten av vedtektsbestemmelser eventuelt aksjonæravtaler ved generasjonsskifter, og utfordringene som kan oppstå dersom situasjonen ikke er hensynttat i formalia styrets rolle i generasjonsskifteprosesser forberedelsene og tilretteleggingen i generasjonsskifteprosesser sjekkliste ved generasjonsskifteprosesser [-]
Les mer
Nettkurs 18 måneder 4 890 kr
I Matematikk R2 lærer du om integralregning, rekker, vektorer og trigonometri. Matematikk R2 er for deg som trenger realfagmatematikk for videre studier. [+]
I Matematikk R2 lærer du om integralregning, rekker, vektorer og trigonometri. Matematikk R2 er for deg som trenger realfagmatematikk for videre studier eller for å forbedre karakteren din. Faget er obligatorisk om du skal studere til ingeniør eller arkitekt. Matematikk R2 gir 1 realfagpoeng. Du må ha matematikk R1 for å ta dette faget. Gjennomføring NettstudierDu bestemmer hvor og når du vil lære. Her får du varierte leksjoner i form av tekster, video, quiz, podcast, veiledning og oppgaver. Du har alltid kontakt med din personlige lærer hos K2. Målet er å gjøre deg best mulig forberedt til eksamen. Eksamen Eksamen i Matematikk R2 er skriftlig. Som privatist må du selv melde deg opp til eksamen. Oppmeldingsfristene er normalt 15. september og 1. februar. Husk at betaling av eksamensavgiften skjer ved oppmelding. Veien videre Om du har generell studiekompetanse (GENS) og velger å ta fagene fysikk 1 og matematikk R1 og R2 som privatist, da oppfyller du opptakskravene til flere studier, inkludert ingeniørstudier. Se praktisk info for frister og opptak til universitet og høyskole. Gratis veiledning Er du usikker på hva som skal til for å få studiekompetanse, ta gjerne kontakt med oss for gratis veiledning. Vi har veiledere med mange års erfaring som står klare til å hjelpe deg!Ønsker du mer informasjon om kurset velg "Send meg info"-knappen under. Vil du chatte med oss, så klikk på ikonet nederst i høyre hjørne. Gratis veiledning Vi har veiledere med mange års erfaring som står klare til å hjelpe deg! Er du usikker på hva som skal til for å få studiekompetanse, ta gjerne kontakt med oss for gratis veiledning.  Ønsker du mer informasjon om kurset velg "Send meg info"-knappen under. Vil du chatte med oss, klikk på ikonet nederst i høyre hjørne. Lånekassestøtte Utdanningen er godkjent i lånekassen. Du søker direkte via lanekassen.no. Alt du må vite om lån og stipend fra Lånekassen som deltaker hos K2 utdanning Støtteordning Er du organisert i en fagforening, kan du i de fleste fagforeningene søke støtte til utdanning. Dersom du er organisert bør du sjekke med din fagforening om muligheter for støtte, frister og hvordan du søker. Forkunnskaper Du må ha fullført grunnskole eller tilsvarende opplæring. Minoritetsspråklige bør ha minimum B1-nivå i norsk muntlig og skriftlig. Dersom du har behov for å lære mere norsk før du starter på utdanning har vi norskkurs på forskjellig nivå (A1-B2). Språkkursene er digitale med personlig oppfølging fra lærer. Se alle norskkurs K2 tilbyr. Krav til utstyr Som deltaker hos K2 må du ha tilgang til pc på eksamen. I tillegg trenger du PC-versjonen av Office eller tilsvarende programmer. Se hva du har tilgang til av nettbaserte ressurser på eksamen. Praktisk info Du finner svar på ofte stilte spørsmål på nettsiden vår under praktisk info.     [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Strategist: Direct, Plan and improve er en modul innen ITIL®. Modulen er en nøkkelkomponenten i både ITIL® 4 Managing Professional og ITIL® 4 Strategic Leader-løp... [+]
Modulen dekker bruk og effekt av Lean og agile arbeidsmåter, og hvordan dette kan utnyttes til fordel for organisasjonen. Kurset vil gi kandidatene en praktisk og strategisk metode for å planlegge og levere kontinuerlig forbedring med nødvendig smidighet.  E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 12 moduler. Les mer om ITIL® 4 på AXELOS sine websider Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert.   [-]
Les mer
Nettkurs
Dette er et gratis pianokurs beregnet på nybegynnere som vil lære å akkompagnere sang og andre instrumenter. Kurset fokuserer ikke på hvordan du spiller etter noter. [+]
Gratis pianokurs I dette pianokurset skal du lære: å spille på tangentene med riktige fingre å spille et utvalg av akkorder å bruke akkorder til å akkompagnere en sang Kurset består av flere moduler der læremidlene er organisert som en bok med en eller flere oppgaver. Modulene  inkluderer tekst, illustrasjoner og video som hjelper deg å forstå temaene. Modul 1: Kom i gang med spillingen Modul 2: Spille med akkorder Modul 3: Eksempel på musikk laget av kursutvikler [-]
Les mer
Oslo 4 dager 27 500
17 Nov
Training for leaders and professionals driving the work to improve the organization's performance. [+]
Lean Six Sigma Black Belt Course You will learn to use DMAIC to solve complex problems and lead improvement projects with cross-functional teams. You will learn to use data analysis and visualization for process improvement and product development. The course is a 4-day classroom course.   Learning Objectives: Use the DMAIC method to solve complex problems and lead larger improvement projects involving multiple departments. Utilize data analysis and visualization for process improvement and product development. Make fact-based decisions based on statistics and data analysis. Strengthen your leadership skills to drive improvement efforts within the company. Develop skills to successfully implement change. Coach Green Belt and project team participants.   Target Audience: This course is suitable for those who lead improvement programs, have operational or quality responsibility, work with process and product development, lead complex improvement projects involving multiple departments, and others who are focused on maintaining a holistic approach to improvement work.   Course Content: The course follows the DMAIC structure: Define: Identify and define process- or product-related problems to be improved. Set specific, measurable goals for improvement. Measure: Collect and analyze data to understand the current situation (use of descriptive statistics, histograms & control charts). Evaluate process performance with capability analysis and determine how to improve it. Use control charts for variation analysis to understand and quantify sources of variation. Evaluate measurement systems to ensure accurate measurements (repeatability, reproducibility, stability, sensitivity, and capability). Analyze: Prove root causes with graphical analyses: Pareto Box plot Scatter plot Correlation and regression Hypothesis testing Improve: Use Design of Experiments (DOE) to identify optimal process settings. Apply DOE in product development. Implement improvements. Control: Maintain improvements using control charts and continuous monitoring. Implement control plans to ensure that improvements are sustained.   Tools & Methods: Brainwriting Voice of the Customer (VOC) Requirement Trees Defining KPIs (Key Performance Indicators) Operational Definition Strategic Goal Deployment Process Walk / "Go to Gemba" Problem Statement Specific Goals Project Selection Project Charter Communication Plan Context Diagram High-Level Process Map (SIPOC) Process Variable Mapping Value Stream Analysis Data Analysis Descriptive Statistics Histogram Normal Distribution and Other Distributions Pareto Chart Boxplot SPC & Control Charts Capability Analysis Variation Analysis Measurement System Evaluation Scatterplot, Correlation, and Regression Design of Experiments (DOE) Hypothesis Testing Prioritization Matrix Some of the methods and tools are described at an introductory level, while others are covered in depth.   Instructor: The course instructor Sissel Pedersen Lundeby is an IASSC (International Association for Six Sigma Certification) accredited instructor (the only one in Norway as of August 2024): "This accreditation publicly reflects that you have met the standards established by IASSC such that those who participate in a training program led by you can expect to receive an acceptable level of knowledge transfer consistent with the Lean Six Sigma belt Bodies of Knowledge as established by IASSC."  Sissel holds a master's degree in chemical engineering from NTNU and has more than 19 years of experience in production and environmental technology. Her Lean Six Sigma training began in 2002, at an American company, where she became Black Belt certified in 2004. In 2017, she was also Black Belt certified through IASSC. Sissel has extensive experience in using Lean Six Sigma for improvements and focuses on achieving measurable results. The courses use practical, recognizable examples and present Lean Six Sigma in a simple and understandable way.    Feedback: "Inspiring, professionally skilled, makes a theoretical subject accessible to everyone." Espen Fjeld, Commercial Director at Berendsen "Highly competent and clear delivery. Fun and builds trust." Jon Sørensen, Production Manager at Berendsen "10/10, good at reaching everyone." Erlend Stene, Sales Manager at Berendsen "Clear and well-presented. Good at checking understanding and listening." Morten Bodding, Production Manager at Berendsen "Made a difference, engaged and skilled." Course Participant from EWOS "You are inspiring, positive, and skilled in your field." Course Participant from EWOS "I was very impressed with Sissel's Lean Six Sigma knowledge. She makes it easy to identify improvements and achieve results." Daryl Powell, Lean Manager, Kongsberg Maritime Subsea   Diploma and Certification: Diploma: To receive a diploma for successful completion, you must have attended at least 3 out of 4 course days. Certification: To become certified as a Lean Six Sigma Black Belt, the following requirements must be met: Attendance at a minimum of 3 out of the 4 course days. Completion of a Green Belt course with a certificate of completion. Completion of a Six Sigma improvement project within 12 months after the course ends. Participation in mandatory coaching throughout the Black Belt project. Mandatory coaching ensures that your project is executed in line with best practices and the Lean Six Sigma methodology. Through six 1-hour sessions with a senior consultant, you will receive support and guidance to: Select a project that is realistic and value-adding. Execute each phase of the project according to best practices. Gain confidence and competence in using Lean Six Sigma tools through practical application. The coaching sessions include: 1 hour for project selection. 1 hour for review after each DMAIC phase. It is sufficient to have a Green Belt certificate of completion. Participants do not need to complete both a Green Belt project and a Black Belt project to become Black Belt certified. The focus is on the successful completion and approval of the Black Belt project. Coaching fee: 19,950 NOK (includes six 1-hour sessions and project approval). This is an investment in your success, and our experience shows that participants who receive coaching achieve better results and execute their projects more effectively. [-]
Les mer
3 dager 24 500 kr
Check Point Certified Security Expert (CCSE) – R81.20 [+]
Check Point Certified Security Expert (CCSE) – R81.20 [-]
Les mer
Nettkurs 5 timer 6 000 kr
Denne pakken med e-læringskurs er laget for personell som er involvert i å organisere og/eller utføre: planlegging, installasjon, inspeksjon og vedlikehold av Ex utstyr. [+]
Kurspakken vil gi deltakerne en innføring og repetisjon av disse temaene i henhold til relevante deler av IEC 60079-standarden. (NEK EN 60079-standarder) Kurset varer i 5 timer  Anbefalt maksimalt tid for evaluering av kompetanse er 5 år E-læringskurset kan også  brukes som repetisjon etter 5 år  Innhold:Pakke med 5 e-læringskurs:- Ex grunnleggende repetisjon og prøve SOG8532- Elektriske installasjoner i Ex områder SOG8533- Elektrisk Exi InstallasjonerSOG8534- Kabler, kabelinnføring og IP grad i Ex områder SOG8535- Inspeksjon og vedlikehold I Ex områder SOG8536 Læremål:- Grunnleggende Ex filosofi, repetisjon- Klargjøring og installasjon av elektrisk utstyr i eksplosjonsfarlige områder- Inspeksjon og vedlikehold av elektrisk utstyr i eksplosjonsfarlige områder- Kjenne til hva slags vedlikehold som skal gjøres, og hvilke vedlikeholdsoppgaver som må sendes til et autorisert verksted- Gi CompEx sertifiserings-kandidater den teoretiske opplæringen som er nødvendig for den teoretiske eksamen [-]
Les mer
Virtuelt klasserom 4 dager 25 000 kr
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
COURSE OVERVIEW Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. TARGET AUDIENCE The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure. COURSE OBJECTIVES   Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics COURSE CONTENT Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Introduction to Azure Synapse Analytics Describe Azure Databricks Introduction to Azure Data Lake storage Describe Delta Lake architecture Work with data streams by using Azure Stream Analytics Lab 1: Explore compute and storage options for data engineering workloads Combine streaming and batch processing with a single pipeline Organize the data lake into levels of file transformation Index data lake storage for query and workload acceleration After completing module 1, students will be able to: Describe Azure Synapse Analytics Describe Azure Databricks Describe Azure Data Lake storage Describe Delta Lake architecture Describe Azure Stream Analytics Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Design a multidimensional schema to optimize analytical workloads Code-free transformation at scale with Azure Data Factory Populate slowly changing dimensions in Azure Synapse Analytics pipelines Lab 2: Designing and Implementing the Serving Layer Design a star schema for analytical workloads Populate slowly changing dimensions with Azure Data Factory and mapping data flows After completing module 2, students will be able to: Design a star schema for analytical workloads Populate a slowly changing dimensions with Azure Data Factory and mapping data flows Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Lab 3: Data engineering considerations Managing files in an Azure data lake Securing files stored in an Azure data lake After completing module 3, students will be able to: Design a Modern Data Warehouse using Azure Synapse Analytics Secure a data warehouse in Azure Synapse Analytics Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Explore Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Lab 4: Run interactive queries using serverless SQL pools Query Parquet data with serverless SQL pools Create external tables for Parquet and CSV files Create views with serverless SQL pools Secure access to data in a data lake when using serverless SQL pools Configure data lake security using Role-Based Access Control (RBAC) and Access Control List After completing module 4, students will be able to: Understand Azure Synapse serverless SQL pools capabilities Query data in the lake using Azure Synapse serverless SQL pools Create metadata objects in Azure Synapse serverless SQL pools Secure data and manage users in Azure Synapse serverless SQL pools Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Understand big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Lab 5: Explore, transform, and load data into the Data Warehouse using Apache Spark Perform Data Exploration in Synapse Studio Ingest data with Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Spark pools in Azure Synapse Analytics Integrate SQL and Spark pools in Azure Synapse Analytics After completing module 5, students will be able to: Describe big data engineering with Apache Spark in Azure Synapse Analytics Ingest data with Apache Spark notebooks in Azure Synapse Analytics Transform data with DataFrames in Apache Spark Pools in Azure Synapse Analytics Integrate SQL and Apache Spark pools in Azure Synapse Analytics Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Lab 6: Data Exploration and Transformation in Azure Databricks Use DataFrames in Azure Databricks to explore and filter data Cache a DataFrame for faster subsequent queries Remove duplicate data Manipulate date/time values Remove and rename DataFrame columns Aggregate data stored in a DataFrame After completing module 6, students will be able to: Describe Azure Databricks Read and write data in Azure Databricks Work with DataFrames in Azure Databricks Work with DataFrames advanced methods in Azure Databricks Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Lab 7: Ingest and load Data into the Data Warehouse Perform petabyte-scale ingestion with Azure Synapse Pipelines Import data with PolyBase and COPY using T-SQL Use data loading best practices in Azure Synapse Analytics After completing module 7, students will be able to: Use data loading best practices in Azure Synapse Analytics Petabyte-scale ingestion with Azure Data Factory Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Data integration with Azure Data Factory or Azure Synapse Pipelines Code-free transformation at scale with Azure Data Factory or Azure Synapse Pipelines Lab 8: Transform Data with Azure Data Factory or Azure Synapse Pipelines Execute code-free transformations at scale with Azure Synapse Pipelines Create data pipeline to import poorly formatted CSV files Create Mapping Data Flows After completing module 8, students will be able to: Perform data integration with Azure Data Factory Perform code-free transformation at scale with Azure Data Factory Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Orchestrate data movement and transformation in Azure Data Factory Lab 9: Orchestrate data movement and transformation in Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines After completing module 9, students will be able to: Orchestrate data movement and transformation in Azure Synapse Pipelines Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Lab 10: Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Understand developer features of Azure Synapse Analytics Optimize data warehouse query performance in Azure Synapse Analytics Improve query performance After completing module 10, students will be able to: Optimize data warehouse query performance in Azure Synapse Analytics Understand data warehouse developer features of Azure Synapse Analytics Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Analyze and optimize data warehouse storage in Azure Synapse Analytics Lab 11: Analyze and Optimize Data Warehouse Storage Check for skewed data and space usage Understand column store storage details Study the impact of materialized views Explore rules for minimally logged operations After completing module 11, students will be able to: Analyze and optimize data warehouse storage in Azure Synapse Analytics Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark pools Query Azure Cosmos DB with serverless SQL pools Lab 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Synapse Analytics Query Azure Cosmos DB with serverless SQL pool for Azure Synapse Analytics After completing module 12, students will be able to: Design hybrid transactional and analytical processing using Azure Synapse Analytics Configure Azure Synapse Link with Azure Cosmos DB Query Azure Cosmos DB with Apache Spark for Azure Synapse Analytics Query Azure Cosmos DB with SQL serverless for Azure Synapse Analytics Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Lab 13: End-to-end security with Azure Synapse Analytics Secure Azure Synapse Analytics supporting infrastructure Secure the Azure Synapse Analytics workspace and managed services Secure Azure Synapse Analytics workspace data After completing module 13, students will be able to: Secure a data warehouse in Azure Synapse Analytics Configure and manage secrets in Azure Key Vault Implement compliance controls for sensitive data Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Lab 14: Real-time Stream Processing with Stream Analytics Use Stream Analytics to process real-time data from Event Hubs Use Stream Analytics windowing functions to build aggregates and output to Synapse Analytics Scale the Azure Stream Analytics job to increase throughput through partitioning Repartition the stream input to optimize parallelization After completing module 14, students will be able to: Enable reliable messaging for Big Data applications using Azure Event Hubs Work with data streams by using Azure Stream Analytics Ingest data streams with Azure Stream Analytics Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Process streaming data with Azure Databricks structured streaming Lab 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks Explore key features and uses of Structured Streaming Stream data from a file and write it out to a distributed file system Use sliding windows to aggregate over chunks of data rather than all data Apply watermarking to remove stale data Connect to Event Hubs read and write streams After completing module 15, students will be able to: Process streaming data with Azure Databricks structured streaming Module 16: Build reports using Power BI integration with Azure Synpase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Create reports with Power BI using its integration with Azure Synapse Analytics Lab 16: Build reports using Power BI integration with Azure Synpase Analytics Integrate an Azure Synapse workspace and Power BI Optimize integration with Power BI Improve query performance with materialized views and result-set caching Visualize data with SQL serverless and create a Power BI report After completing module 16, students will be able to: Create reports with Power BI using its integration with Azure Synapse Analytics Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. Use the integrated machine learning process in Azure Synapse Analytics Lab 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics Create an Azure Machine Learning linked service Trigger an Auto ML experiment using data from a Spark table Enrich data using trained models Serve prediction results using Power BI After completing module 17, students will be able to: Use the integrated machine learning process in Azure Synapse Analytics     [-]
Les mer
Det er kun personell som innehar dokumentert riggeropplæring som kan foreta riggeoperasjoner. Dette kurset gir en grunnleggende repetisjon i og oppdatering av kunnskap o.... [+]
Målsetting Det er kun personell som innehar dokumentert riggeropplæring som kan foreta riggeoperasjoner. Dette kurset gir en grunnleggende repetisjon i og oppdatering av kunnskap om riggeoperasjoner i henhold til gjeldende standarder og forskrifter. Emneliste Introduksjon Generelt om riggeroperasjoner Personlig verneutstyr Regelverk Planlegging av operasjoner, SJA, prosedyrer Praktisk øvelser Planlegging av operasjoner Valg og kontroll av løfteredskap Riktig stropping Bruk av barriere/sperremateriell Gjennomføring av horisontal/vertikal forflytning av last Riktig bruk av verneutstyr Vurdering av sikkerhet under riggoperasjon Avslutningsprøve Praktisk prøve Kompetansebevis / sertifikat Et kursbevis vil bli utstedt til hver kandidat som har gjennomført og bestått opplæringen.Kursbeviset vil inneholde informasjon om opplæringssted, kursinnhold, dato for gjennomføring, kandidatens navn og fødselsdato og være signert av daglig leder/kurs koordinator [-]
Les mer
Oslo 2 dager 18 900 kr
30 Oct
30 Oct
MSP® Practitioner 5th Edition [+]
MSP® Practitioner 5th Edition [-]
Les mer
4 dager 8 490 kr
Få et komplett truckførerbevis med praksis. Godkjent overalt, så kan brukes både i butikk, lager, industri og offshore. [+]
Komplett truckførerbevis med teori, praksis og oppkjøring. Kurset inkluderer teori for klasse T1-T5 og oppkjøring på klasse T1, T2 og T4. Emner som gjennomgås er følgende: Ulike ulykker og hvordan forebygge dem Praktisk bruk og vedlikehold av ulike typer truck Krav til truckfører Lover og forskrifter Oppbygning og bruksområder for truck [-]
Les mer
Nettkurs 2 290 kr
Skrivekurs for barn og ungdom som er glade i å skrive. Kurset bygger på våre erfaringer med skrivekurs for voksne på Forfatterskolen. Det er utviklet i samarbeid med For... [+]
Den første regelen i dette kurset er at du ikke skal være redd for å skrive noe galt. Skriv som du har lyst og slik det lyder best for deg. Når du skriver historier som forfatter, er det du som bestemmer. Skrivekurs for barn og ungdom består av fem leksjoner med oppgaver der du får trening i å bruke noen av verktøyene som finnes i forfatterens verktøykasse. Hver leksjon inneholder en innsendingsoppgave som læreren gir tilbakemelding på og en frivilligtankedelingsoppgave som deltakerne kan dele med de andre på kurset. Den første leksjonen introduserer din dikteriske frihet. Du skal studere to tegninger og bruke din dikteriske frihet til å fortelle mer enn du ser på bildene. En historie med lyder, lukter og følelser. Der hovedpersonen er helten og skurken er skurk. Den andre leksjonen viser forskjellen mellom to fortellervinkler. Du lærer å skrive jeg-historier med helten i første person. Du lærer også hvordan du kan fortelle historien din med helten i tredje person. I den tredje leksjonen lærer du å gjøre historien din mer levende ved ikke bare å si, men å vise hvordan personene i fortellingen har det. I fortellingen du skal skrive, holder det ikke å bare å si at bursdagsbarnet blir glad for presangen, du må vise at hun stråler som en liten sol. Den fjerde leksjonen handler om hvordan du kan bruke direkte og indirekte tale i til å gjøre historiene dine mer levende. Oppgaven hjelper deg å gjøre historien din mer spennende og variert ved å bruke begge talemåtene. I den femte leksjonen skal du lage din egen lille historie ved å dikte veien videre på noe av det du har tenkt eller skrevet så langt i kurset. [-]
Les mer
Virtuelt klasserom 4 dager 17 200 kr
Kurset passer for deg som ønsker å komme igang med Java-programmering, forstå grunnleggende programmeringskonsepter, lage enkle programmer og forstå Java-kode skrevet av ... [+]
Dette er et 4-dagers introduksjonskurs i Java-programmering. Kurset passer for deg som ønsker å komme igang med Java-programmering, forstå grunnleggende programmeringskonsepter, lage enkle programmer og forstå Java-kode skrevet av andre. Hvis du ikke har tatt noen Java-kurs tidligere er dette stedet å begynne. Vi bruker Eclipse IDE med siste versjon av Java (Standard Edition) til kurset.   Målsetting Etter gjennomført kurs vil deltakerne kunne skrive enkle programmer i Java og kjenne til de grunnleggende komponentene og prinsippene Java bygger på.   Kursinnhold Hva er Java? Kort historikk og anvendelseområder frem til idag. Grunnleggende konsepter for objektorientert programmering: Abstraksjon, innkapsling, arv og polymorfi Variabler og datatyper Klasser, objekter og metoder Public, Private og Protected Constructors, getters and setters Pakker og biblioteker Behandling av tall og tekst Betingelser (if - else, switch) Progammeringsløkker (for, while, do ... while, forEach) Lesing fra og skriving til tekstfiler Java Collections (Set, List, Map, ArrayList, TreeMap etc.) Lesing fra og skriving til databaser med JDBC Kompilering og eksekvering av Java-programmer Hente inn avhengigheter fra internett ved hjelp av Maven Nytt i Java: Stream api med filter, map, reduce, forEach og pil-funksjoner, samt Collections Literals.   Gjennomføring Kurset gjennomføres med en kombinasjon av online læringsmidler, gjennomgang av temaer og problemstillinger og praktiske øvelser. Det er ingen avsluttende eksamen, men det er øvingsoppgaver til hvert av temaene som gjennomgås. onsdag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»torsdag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»fredag: Undervisning: Fra kl.10:00-14:00 + oppgaver som «hjemmelekse»mandag: Gjennomgang og oppsummering Fra kl.10:00-14:00   [-]
Les mer