IT-kurs
Hedmark
Du har valgt: Ringsaker
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Ringsaker ) i IT-kurs
 

Nettstudie 12 måneder 5 000 kr
The purpose of this module is to ensure that the organisation’s suppliers and their performances are managed appropriately to support the seamless provision of quality pr... [+]
Understand the purpose and key concepts of the Supplier Management Practice, elucidating its importance in managing supplier relationships and ensuring value delivery from third-party services. This eLearning is: Interactive Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn how to improve user and customer experience, as well as the overall success of your service relationships. [+]
Understand the purpose and key concepts of the Service Desk practice, including how it serves as the central point of contact between the service provider and the users, facilitating effective communication. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content mobil-optimised practical exercises     Exam: 20 questions Multiple Choice 30 minutes Closed book Minimum required score to pass: (65%)   [-]
Les mer
12 måneder 12 000 kr
A combined module that covers the key concepts of 5 key ITIL practices: Change Enablement, Deployment Management, Release Management, Service Configuration Management, an... [+]
Understand the purpose and key concepts of the Plan, Implement, and Control practices, highlighting their importance in establishing, executing, and governing IT service strategies effectively. This eLearning is: Interactive Self-paced Device-friendly 2-3 hours content Mobile-optimised Practical exercises   Exam: 60 questions Multiple Choice 90 Minutes Closed book Pass Mark: 65% [-]
Les mer
Nettkurs 12 måneder 12 000 kr
ITIL® 4 Specialist: Drive Stakeholder Value dekker alle typer engasjement og interaksjon mellom en tjenesteleverandør og deres kunder, brukere, leverandører og partnere. [+]
Kurset fokuserer på konvertering av etterspørsel til verdi via IT-relaterte tjenester. Modulen dekker sentrale emner som SLA-design, styring av flere leverandører, kommunikasjon, relasjonsstyring, CX- og UX-design, kartlegging av kunder og mer. E-læringskurset inneholder 18 timer med undervisning, og er delt inn i 8 moduler. Les mer om ITIL® 4 på  AXELOS sine websider. Du vil motta en e-post med tilgang til e-læringen, sertifiseringsvoucher og digital bok fra Peoplecert. Du avtaler tid for sertifiseringen som beskrevet i e-posten fra Peoplecert. [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Learn best practices for making new and changed services available for use, in line with your organisation's policies and any agreements between the organisation and its ... [+]
Understand the purpose and key concepts of Release Management, elucidating its significance in planning, scheduling, and controlling the build, test, and deployment of releases to ensure they deliver the expected outcomes. The eLearning course: Interactive Self-paced Device-friendly 2-3 hour content Mobile-optimised Practical exercises   Exam:   20 questions Multiple choise Closed book 30 minutes Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Relationship Management, Supplier Management, Service Level Management, Continual Improvement and Info... [+]
Understand the key concepts of Relationship Management, Supplier Management, Service Level Management, Continual Improvement, and Information Security Management, elucidating their significance in fostering collaboration, ensuring service quality, driving continual improvement, and maintaining information security. This eLearning is: Interactive Self-paced   Device-friendly   12 hours content   Mobile-optimised   Practical exercises   Exam: 60 questions Multiple choise 90 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Nettstudie 12 måneder 12 000 kr
A combined module that covers the key concepts of 5 ITIL Practices: Incident Management, Service Desk, Service Request Management, Monitoring and Event Management and Pro... [+]
Understand the purpose and key concepts of the Monitor, Support, and Fulfil practices, elucidating their importance in maintaining, supporting, and delivering IT services effectively.InteractiveOur eLearning:Self-pacedDevice-friendly12 hour contentMobile-optimised Exam:60 questionsMultiple Choice90 minutesClosed bookMinimum required score to pass: 65%  [-]
Les mer
Nettstudie 12 måneder 5 000 kr
Receive practical guidance on the processes and activities of Problem Management, including their roles in the service value chain. [+]
Understand the purpose and key concepts of Problem Management, including its role in identifying and managing the root causes of incidents to prevent recurrence.   This eLearning is: Interactive   Self-paced   Device-friendly   2-3 hours content   Mobile-optimised   Practical exercises   Exam: 20 questions Multiple choise 30 minutes Closed book Minimum required score to pass: 65% [-]
Les mer
Oslo 3 dager 26 900 kr
17 Sep
17 Sep
03 Dec
Kubernetes for App Developers (LFD459) [+]
Kubernetes for App Developers (LFD459) [-]
Les mer
Oslo 5 dager 46 000 kr
21 Jul
08 Sep
10 Nov
https://www.glasspaper.no/kurs/sise-implementing-and-configuring-cisco-identity-services-engine/ [+]
SISE: Implementing and Configuring Cisco Identity Services Engine [-]
Les mer
Nettkurs 3 timer 549 kr
Datavisualisering handler om hvordan man presenterer data på en oversiktlig og profesjonell måte. Det handler om å gi rask og effektiv innsikt i noe som ellers ville vært... [+]
Datavisualisering handler om hvordan man presenterer data på en oversiktlig og profesjonell måte. Det handler om å gi rask og effektiv innsikt i noe som ellers ville vært uoversiktlig og komplisert. Vi mennesker er langt flinkere til å prosessere data som presenteres visuelt enn vi er til å forstå store regneark fulle av tall. I dette kurset, ledet av Espen Faugstad, vil du lære å opprette, tilpasse og perfeksjonere presentasjonen av data i diagramformat ved hjelp av Microsoft Excel. Du vil lære å representere data i forskjellige diagramtyper, inkludert stolpediagram, linjediagram, sektordiagram, hierarkidiagram, statistisk diagram, radardiagram og kombinasjonsdiagram. For å ta dette kurset, kreves grunnleggende forståelse av hvordan Microsoft Excel fungerer. Kurset er strukturert i følgende kapitler: Kapittel 1: Introduksjon Kapittel 2: Diagramutforming Kapittel 3: Diagramformat Kapittel 4: Diagramtyper Kapittel 5: Annet Kapittel 6: Print Kapittel 7: Avslutning Etter å ha fullført kurset vil du være i stand til å effektivt bruke diagrammer i Excel for å presentere data på en måte som gjør det enkelt for andre å forstå og dra nytte av informasjonen.   Varighet: 2 timer og 44 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Vår tjeneste fungerer på samme måte som strømmetjenester for musikk eller TV-serier, der våre kunder betaler en fast månedspris for tilgang til alle kursene vi har tilgjengelig. Vi har opplevd betydelig vekst de siste årene, med over 30 000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling engasjerende, spennende og tilgjengelig for alle, og vi har støtte fra Innovasjon Norge og Forskningsrådet. [-]
Les mer
1 dag 9 500 kr
06 Oct
24 Nov
AI-3002: Create document intelligence solutions with Azure AI Document Intelligence [+]
AI-3002: Create document intelligence solutions with Azure AI Document Intelligence [-]
Les mer
1 dag 8 000 kr
This one-day course will provide foundational level knowledge on Azure concepts; core Azure services; core solutions and management tools; general security and network se... [+]
COURSE OVERVIEW This course does not provide an Azure pass or time in the classroom for students to do any hands-on activities. TARGET AUDIENCE  This course is suitable for program managers and technical sales, with a general IT background. These students want to learn about our offerings, see how components are implemented, and ask questions about products and features. COURSE OBJECTIVES   Discuss the basics of cloud computing and Azure, and how to get started with Azure's subscriptions and accounts. Describe the advantages of using cloud computing services, learning to differentiate between the categories and types of cloud computing, and how to examine the various concepts, resources, and terminology that are necessary to work with Azure architecture. Outline the core services available with Microsoft Azure. Discuss the core solutions that encompass a wide array of tools and services from Microsoft Azure. Describe the general security and network security features, and how you can use the various Azure services to help ensure that your cloud resources are safe, secure, and trusted. Discuss the identity, governance, privacy, and compliance features, and how Azure can help you secure access to cloud resources, what it means to build a cloud governance strategy, and how Azure adheres to common regulatory and compliance standards. Discuss the factors that influence cost, tools you can use to help estimate and manage your cloud spend, and how Azure's service-level agreements (SLAs) can impact your application design decisions. COURSE CONTENT Module 1: Cloud Concepts In this module, you'll take an entry level end-to-end look at Azure and its capabilities, which will provide you with a solid foundation for completing the available modules for Azure Fundamentals. Introduction to Azure fundamentals Fundamental Azure concepts After completing this module, students will be able to: Understand the benefits of cloud computing in Azure and how it can save you time and money. Explain concepts such as high availability, scalability, elasticity, agility, and disaster recovery. Module 2: Core Azure Services In this module, you learn about core Azure services like Azure database, Azure compute, Azure storage, and Azure Networking. Core Azure architectural components Core Azure workload products Azure networking services Azure storage services Azure database services After completing this module, students will be able to: Describe core Azure architecture components such as subscriptions, management groups, and resources. Summarize geographic distribution concepts such as Azure regions, region pairs, and availability zones. Understand the services available in Azure including compute, network, storage, and databases. Identify virtualization services such as Azure VMs, Azure Container Instances, and Azure Kubernetes. Compare Azure's database services such as Azure Cosmos DB, Azure SQL, and Azure Database for MySQL. Examine Azure networking resources such as Virtual Networks, VPN Gateways, and Azure ExpressRoute. Summarize Azure storage services such Azure Blob Storage, Azure Disk Storage, and Azure File Storage. Module 3: Core Solutions In this module, you'll learn about AI machine learning, Azure DevOps, monitoring fundamentals, management fundamentals, serverless computing fundamentals. and IoT fundamentals. Choose the best Azure IoT service Choose the best AI service Choose the best Azure serverless technology Choose the best tools with DevOps and GitHub Choose the best management tools Choose the best Azure monitoring service After completing this module, students will be able to: Choose the correct Azure AI service to address different kinds of business challenges. Choose the best software development process tools and services for a given business scenario. Choose the correct cloud monitoring service to address different kinds of business challenges. Choose the correct Azure management tool to address different kinds of technical needs. Choose the right serverless computing technology for your business scenario. Choose the best Azure IoT service for a given business scenario. Module 4: General security and networking features In this module, you will learn how to protect yourself against security threats, and secure your networks with Azure. Security Tools and Features Secure Network Connectivity After completing this module, students will be able to: Strengthen your security posture and protect against threats by using Microsoft Defender for Cloud. Collect and act on security data from many different sources by using Microsoft Sentinel. Manage dedicated physical servers to host your Azure VMs for Windows and Linux. Identify the layers that make up a defense in depth strategy. Explain how Azure Firewall enables you to control what traffic is allowed on the network. Configure network security groups to filter network traffic to and from Azure resources. Explain how Azure DDoS Protection helps protect your Azure resources from DDoS attacks. Module 5: Identity, Governance, Privacy, and Compliance In this module, you will learn about Azure identity services, how to build a cloud governance strategy, and privacy, compliance and data protection standards on Azure. Core Azure identity services Azure Governance Methodologies Privacy, Compliance, and Data Protection standards After completing this module, students will be able to: Explain the difference between authentication and authorization. Describe how Azure Active Directory provides identity and access management. Explain the role single sign-on (SSO), multifactor authentication, and Conditional Access play. Make organizational decisions about your cloud environment by using the CAF for Azure. Define who can access cloud resources by using Azure role-based access control. Apply a resource lock to prevent accidental deletion of your Azure resources. Apply tags to your Azure resources to help describe their purpose. Control and audit how your resources are created by using Azure Policy. Enable governance at scale across multiple Azure subscriptions by using Azure Blueprints. Explain the types of compliance offerings that are available on Azure. Gain insight into regulatory standards and compliance on Azure. Explain Azure capabilities that are specific to government agencies. Module 6: Azure Pricing and Lifecycle In this module, you will learn how to plan and manage Azure costs, and how to choose the right Azure services though SLAs and service lifecycle. Planning and Cost Management Azure Service Level Agreements (SLAs) and Lifecycle After completing this module, students will be able to: Use the Total Cost of Ownership Calculator. Describe the different ways you can purchase Azure products and services. Use the Pricing calculator to estimate the monthly cost of running your cloud workloads. Define the major factors that affect total cost and apply recommended practices to minimize cost. Describe what a service-level agreement (SLA) is and why SLAs are important. Identify factors, such as the service tier you choose, that can affect an SLA. Combine SLAs to compute a composite SLA. Describe the service lifecycle in Azure. TEST CERTIFICATION This course helps to prepare for exam AZ-900. FOLLOW ON COURSES M-AZ104, Microsoft Azure Administrator M-AZ204, Developing Solutions for Microsoft Azure M-AZ303, Microsoft Azure Architect Technologies M-DP200, Implementing an Azure Data Solution (DP-200) [-]
Les mer
Bergen Oslo 2 dager 9 900 kr
26 Aug
26 Aug
04 Sep
Excel Videregående [+]
Excel Videregående [-]
Les mer
Virtuelt klasserom 3 dager 20 000 kr
Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. [+]
 This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. TARGET AUDIENCE This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. COURSE CONTENT Module 1: Introduction to Azure Machine Learning In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. Getting Started with Azure Machine Learning Azure Machine Learning Tools Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools After completing this module, you will be able to Provision an Azure Machine Learning workspace Use tools and code to work with Azure Machine Learning Module 2: No-Code Machine Learning with Designer This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. Training Models with Designer Publishing Models with Designer Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer After completing this module, you will be able to Use designer to train a machine learning model Deploy a Designer pipeline as a service Module 3: Running Experiments and Training Models In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. Introduction to Experiments Training and Registering Models Lab : Running ExperimentsLab : Training and Registering Models After completing this module, you will be able to Run code-based experiments in an Azure Machine Learning workspace Train and register machine learning models Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. Working with Datastores Working with Datasets Lab : Working with DatastoresLab : Working with Datasets After completing this module, you will be able to Create and consume datastores Create and consume datasets Module 5: Compute Contexts One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. Working with Environments Working with Compute Targets Lab : Working with EnvironmentsLab : Working with Compute Targets After completing this module, you will be able to Create and use environments Create and use compute targets Module 6: Orchestrating Operations with Pipelines Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. Introduction to Pipelines Publishing and Running Pipelines Lab : Creating a PipelineLab : Publishing a Pipeline After completing this module, you will be able to Create pipelines to automate machine learning workflows Publish and run pipeline services Module 7: Deploying and Consuming Models Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. Real-time Inferencing Batch Inferencing Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service After completing this module, you will be able to Publish a model as a real-time inference service Publish a model as a batch inference service Module 8: Training Optimal Models By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. Hyperparameter Tuning Automated Machine Learning Lab : Tuning HyperparametersLab : Using Automated Machine Learning After completing this module, you will be able to Optimize hyperparameters for model training Use automated machine learning to find the optimal model for your data Module 9: Interpreting Models Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. Introduction to Model Interpretation using Model Explainers Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models After completing this module, you will be able to Generate model explanations with automated machine learning Use explainers to interpret machine learning models Module 10: Monitoring Models After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. Monitoring Models with Application Insights Monitoring Data Drift Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift After completing this module, you will be able to Use Application Insights to monitor a published model Monitor data drift   [-]
Les mer