IT-kurs
Kurs i programvare og applikasjoner
Rogaland
Du har valgt: Sandnes
Nullstill
Filter
Ferdig

-

Mer enn 100 treff ( i Sandnes ) i Kurs i programvare og applikasjoner
 

1 dag 9 500 kr
19 Sep
14 Nov
AZ-1008: Administer Active Directory Domain Services [+]
AZ-1008: Administer Active Directory Domain Services [-]
Les mer
1 dag 9 500 kr
01 Sep
03 Nov
DP-3007: Train and deploy a machine learning model with Azure Machine Learning [+]
DP-3007: Train and deploy a machine learning model with Azure Machine Learning [-]
Les mer
2 dager 16 900 kr
Elasticsearch [+]
Elasticsearch [-]
Les mer
Oslo Bergen 2 dager 12 500 kr
08 Sep
08 Sep
23 Sep
Power BI Desktop [+]
Power BI Desktop [-]
Les mer
Nettkurs 3 timer 3 120 kr
Bli kjent med Revu (Bruksområder, grensesnitt, menyer, verktøy, paneler og profiler) Grunnleggende PDF-håndtering med Revu Markeringsverktøy og ... [+]
Bli kjent med Revu (Bruksområder, grensesnitt, menyer, verktøy, paneler og profiler) Grunnleggende PDF-håndtering med Revu Markeringsverktøy og måleverktøy Innføring i Tool Chest Innføring i Markeringslisten Innføring i Studio [-]
Les mer
Oslo 3 dager 27 900 kr
13 Aug
13 Aug
12 Nov
DevOps Engineering on AWS [+]
DevOps Engineering on AWS [-]
Les mer
Nettkurs 4 timer 549 kr
Dette kurset er laget for deg som vil lære å bruke Google Analytics 4, og få innsikt i hvordan kundene dine bruker nettstedet eller appen din. Kurset varer i 4 timer og 5... [+]
Ønsker du å mestre Google Analytics 4 for å få dybdeinnsikt i kundeadferden på nettstedet eller appen din? Da er kurset "Google Analytics 4: Komplett", ledet av Espen Faugstad, perfekt for deg. Dette kurset er designet for å gi deg en helhetlig forståelse av Google Analytics 4, slik at du kan jobbe profesjonelt med dette kraftige analyseverktøyet. Kurset starter med grunnleggende om hvordan Google Analytics 4 fungerer og veileder deg gjennom installasjonen på din nettside. Du vil lære å konfigurere Google Analytics for å maksimere dets potensial, administrere brukere, spore nettstedsøk, og mye mer. I tillegg gir kurset deg en detaljert gjennomgang av standardrapporter og utforskninger som er tilgjengelige i Google Analytics 4. Mot slutten av kurset vil du dykke inn i mer avanserte temaer som opprettelse og sporing av egendefinerte hendelser, konverteringssporing, og hvordan du kan utnytte innsikter fra brukerdata for å forbedre dine digitale strategier. Dette kurset er din vei til å bli en ekspert i Google Analytics 4.   Innhold: Kapittel 1: Introduksjon Kapittel 2: Installer Kapittel 3: Konfigurer Kapittel 4: Rapporter Kapittel 5: Utforsk Kapittel 6: Hendelser Kapittel 7: Avansert Kapittel 8: Avslutning   Varighet: 4 timer og 48 minutter   Om Utdannet.no: Utdannet.no tilbyr noen av landets beste digitale nettkurs. Tjenesten fungerer på samme måte som strømmetjenester for musikk eller TV-serier. Våre kunder betaler en fast månedspris og får tilgang til alle kursene som er produsert så langt. Plattformen har hatt en god vekst de siste årene og kan skilte med 30.000 registrerte brukere og 1,5 millioner videoavspillinger. Vårt mål er å gjøre kompetanseutvikling moro, spennende og tilgjengelig for alle – og med oss har vi Innovasjon Norge og Forskningsrådet. [-]
Les mer
Virtuelt klasserom 4 dager 30 000 kr
29 Sep
In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azu... [+]
The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. After completing this course, students will be able to: Explore compute and storage options for data engineering workloads in Azure Design and Implement the serving layer Understand data engineering considerations Run interactive queries using serverless SQL pools Explore, transform, and load data into the Data Warehouse using Apache Spark Perform data Exploration and Transformation in Azure Databricks Ingest and load Data into the Data Warehouse Transform Data with Azure Data Factory or Azure Synapse Pipelines Integrate Data from Notebooks with Azure Data Factory or Azure Synapse Pipelines Optimize Query Performance with Dedicated SQL Pools in Azure Synapse Analyze and Optimize Data Warehouse Storage Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link Perform end-to-end security with Azure Synapse Analytics Perform real-time Stream Processing with Stream Analytics Create a Stream Processing Solution with Event Hubs and Azure Databricks Build reports using Power BI integration with Azure Synpase Analytics Perform Integrated Machine Learning Processes in Azure Synapse Analytics Course prerequisites Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.Recommended prerequisites:M-DP900 - Microsoft Azure Data FundamentalsM-AZ900 - Microsoft Azure Fundamentals Agenda Module 1: Explore compute and storage options for data engineering workloads This module provides an overview of the Azure compute and storage technology options that are available to data engineers building analytical workloads. This module teaches ways to structure the data lake, and to optimize the files for exploration, streaming, and batch workloads. The student will learn how to organize the data lake into levels of data refinement as they transform files through batch and stream processing. Then they will learn how to create indexes on their datasets, such as CSV, JSON, and Parquet files, and use them for potential query and workload acceleration. Module 2: Design and implement the serving layer This module teaches how to design and implement data stores in a modern data warehouse to optimize analytical workloads. The student will learn how to design a multidimensional schema to store fact and dimension data. Then the student will learn how to populate slowly changing dimensions through incremental data loading from Azure Data Factory. Module 3: Data engineering considerations for source files This module explores data engineering considerations that are common when loading data into a modern data warehouse analytical from files stored in an Azure Data Lake, and understanding the security consideration associated with storing files stored in the data lake. Module 4: Run interactive queries using Azure Synapse Analytics serverless SQL pools In this module, students will learn how to work with files stored in the data lake and external file sources, through T-SQL statements executed by a serverless SQL pool in Azure Synapse Analytics. Students will query Parquet files stored in a data lake, as well as CSV files stored in an external data store. Next, they will create Azure Active Directory security groups and enforce access to files in the data lake through Role-Based Access Control (RBAC) and Access Control Lists (ACLs). Module 5: Explore, transform, and load data into the Data Warehouse using Apache Spark This module teaches how to explore data stored in a data lake, transform the data, and load data into a relational data store. The student will explore Parquet and JSON files and use techniques to query and transform JSON files with hierarchical structures. Then the student will use Apache Spark to load data into the data warehouse and join Parquet data in the data lake with data in the dedicated SQL pool. Module 6: Data exploration and transformation in Azure Databricks This module teaches how to use various Apache Spark DataFrame methods to explore and transform data in Azure Databricks. The student will learn how to perform standard DataFrame methods to explore and transform data. They will also learn how to perform more advanced tasks, such as removing duplicate data, manipulate date/time values, rename columns, and aggregate data. Module 7: Ingest and load data into the data warehouse This module teaches students how to ingest data into the data warehouse through T-SQL scripts and Synapse Analytics integration pipelines. The student will learn how to load data into Synapse dedicated SQL pools with PolyBase and COPY using T-SQL. The student will also learn how to use workload management along with a Copy activity in a Azure Synapse pipeline for petabyte-scale data ingestion. Module 8: Transform data with Azure Data Factory or Azure Synapse Pipelines This module teaches students how to build data integration pipelines to ingest from multiple data sources, transform data using mapping data flowss, and perform data movement into one or more data sinks. Module 9: Orchestrate data movement and transformation in Azure Synapse Pipelines In this module, you will learn how to create linked services, and orchestrate data movement and transformation using notebooks in Azure Synapse Pipelines. Module 10: Optimize query performance with dedicated SQL pools in Azure Synapse In this module, students will learn strategies to optimize data storage and processing when using dedicated SQL pools in Azure Synapse Analytics. The student will know how to use developer features, such as windowing and HyperLogLog functions, use data loading best practices, and optimize and improve query performance. Module 11: Analyze and Optimize Data Warehouse Storage In this module, students will learn how to analyze then optimize the data storage of the Azure Synapse dedicated SQL pools. The student will know techniques to understand table space usage and column store storage details. Next the student will know how to compare storage requirements between identical tables that use different data types. Finally, the student will observe the impact materialized views have when executed in place of complex queries and learn how to avoid extensive logging by optimizing delete operations. Module 12: Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link In this module, students will learn how Azure Synapse Link enables seamless connectivity of an Azure Cosmos DB account to a Synapse workspace. The student will understand how to enable and configure Synapse link, then how to query the Azure Cosmos DB analytical store using Apache Spark and SQL serverless. Module 13: End-to-end security with Azure Synapse Analytics In this module, students will learn how to secure a Synapse Analytics workspace and its supporting infrastructure. The student will observe the SQL Active Directory Admin, manage IP firewall rules, manage secrets with Azure Key Vault and access those secrets through a Key Vault linked service and pipeline activities. The student will understand how to implement column-level security, row-level security, and dynamic data masking when using dedicated SQL pools. Module 14: Real-time Stream Processing with Stream Analytics In this module, students will learn how to process streaming data with Azure Stream Analytics. The student will ingest vehicle telemetry data into Event Hubs, then process that data in real time, using various windowing functions in Azure Stream Analytics. They will output the data to Azure Synapse Analytics. Finally, the student will learn how to scale the Stream Analytics job to increase throughput. Module 15: Create a Stream Processing Solution with Event Hubs and Azure Databricks In this module, students will learn how to ingest and process streaming data at scale with Event Hubs and Spark Structured Streaming in Azure Databricks. The student will learn the key features and uses of Structured Streaming. The student will implement sliding windows to aggregate over chunks of data and apply watermarking to remove stale data. Finally, the student will connect to Event Hubs to read and write streams. Module 16: Build reports using Power BI integration with Azure Synapase Analytics In this module, the student will learn how to integrate Power BI with their Synapse workspace to build reports in Power BI. The student will create a new data source and Power BI report in Synapse Studio. Then the student will learn how to improve query performance with materialized views and result-set caching. Finally, the student will explore the data lake with serverless SQL pools and create visualizations against that data in Power BI. Module 17: Perform Integrated Machine Learning Processes in Azure Synapse Analytics This module explores the integrated, end-to-end Azure Machine Learning and Azure Cognitive Services experience in Azure Synapse Analytics. You will learn how to connect an Azure Synapse Analytics workspace to an Azure Machine Learning workspace using a Linked Service and then trigger an Automated ML experiment that uses data from a Spark table. You will also learn how to use trained models from Azure Machine Learning or Azure Cognitive Services to enrich data in a SQL pool table and then serve prediction results using Power BI. [-]
Les mer
Nettstudie 6 måneder 8 000 kr
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). [+]
Dette kurset gir deg en grunnleggende innføring i to-dimensjonal Datamaskin Assistert Konstruksjon (DAK). Du får et grunnlag for videre studier, og kompetanse som gjør tegnearbeidet både utfordrende og interessant. Du lærer å bli fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger.   Studentlisens for AutoCAD og Revit Structure/Architecture er inkludert. Kurset er på norsk, men AutoCAD-programmet er på engelsk. Programvaren er gratis. Du lærer å bruke de grunnleggende kommandoene slik at du kan utføre enklere tegnearbeid. Du blir fortrolig med å bruke denne type hjelpemiddel til tegnearbeid, teknisk tegning og revidering av tegninger. Du lærer å jobbe rasjonelt og å velge enkle løsninger. Bruk av flere lag med ulike farger gir god visualisering og bedre lesing av tegningene. Målsetting og teksting er viktig, og må utføres tydelig og på en riktig måte. Flater fylles med skravur og elementer kan lagres separat for senere bruk i andre tegninger. Kurset gir deg inngående informasjon gjennom studieveiledningen om hvordan du skal bruke de enkelte kommandoene. Det stilles krav til 100 % nøyaktighet, noe du oppnår når du jobber riktig. Du får øvelser med tegneoppgaver innen bygg, elektro, elkraft og maskin.   [-]
Les mer
Bergen Oslo 2 dager 9 900 kr
26 Aug
26 Aug
04 Sep
Excel Videregående [+]
Excel Videregående [-]
Les mer
Nettstudie 2 semester 4 980 kr
På forespørsel
Introduksjon til Citrix XenApp - installasjon av Citrix XenApp (6.5) - praktisk bruk - konfigurasjon - bruk av Web Interface - publisere applikasjoner og innhold - stream... [+]
  Studieår: 2013-2014   Gjennomføring: Høst og vår Antall studiepoeng: 5.0 Forutsetninger: Generelt gode IT-kunnskaper. Bør ha kjennskap til bruk av Windows server og fordel med MS SQL server. Kjennskap til AD, RDP og DNS. Innleveringer: 8 obligatoriske øvinger Personlig veileder: ja Vurderingsform: 2 dagers praktisk hjemmeeskamen med både teoretiske og praktiske oppgaver. Ansvarlig: Stein Meisingseth Eksamensdato: 17.12.13 / 20.05.14         Læremål: KUNNSKAPER:Kandidaten skal:- kjenne til fordelen med å ta i bruk Citrix XenApp for en bedrift/organisasjon- kunne gjøre rede for hvordan Citrix XenApp brukes som publiseringsplattform- kunne beskrive Citrix XenApp brukes for å rulle ut applikasjoner- kunne gjøre rede for hvordan XenApp kan tas i bruk som applikasjonsvirtualisering på klientside (streaming) og på serverside (publishing)- kunne oppnå optimal applikasjonsytelse og fleksible leveransemuligheter FERDIGHETER:Kandidaten skal:- kunne installere Citrix XenApp- kunne sette opp administrativ konfigurasjon- kunne sette opp og publisere applikasjoner, innhold og desktops for brukere- kunne konfigurere applikasjoner for streaming til servere og til desktops- kunne vurdere hvilken sikkerhet som kreves- kunne sette opp og konfigurere overvåkning- kunne konfigurere og bruke et administrativt grensesnitt GENERELL KOMPETANSEKandidaten:- har kompetanse til selvstendig både å formidle og å ta i bruk sine kunnskaper og ferdigheter i en bedrift som vil bruke Citrix XenApp- kan i et forklare og gjøre bruk av sin kunnskap for bruk av Citrix XenApp Innhold:- introduksjon til Citrix XenApp - installasjon av Citrix XenApp (6.5) - praktisk bruk - konfigurasjon - bruk av Web Interface - publisere applikasjoner og innhold - streame applikasjoner - sette opp restriksjoner - konfigurere lastbalansering - maksimere brukeropplevelse - bruke av skrivere - sikkerhet - overvåkningLes mer om faget her Påmeldingsfrist: 25.08.13 / 25.01.14         Velg semester:  Høst 2013    Vår 2014     Fag Citrix XenApp 4980,-         Semesteravgift og eksamenskostnader kommer i tillegg.   [-]
Les mer
3 dager 24 500 kr
Check Point Certified Security Expert (CCSE) – R81.20 [+]
Check Point Certified Security Expert (CCSE) – R81.20 [-]
Les mer
Oslo 5 dager 46 000 kr
13 Oct
13 Oct
SFWIPA: Securing Data Center Networks and VPNs with Cisco Firewall Threat Defense [+]
SFWIPA: Securing Data Center Networks and VPNs with Cisco Secure Firewall Threat Defense [-]
Les mer
Nettkurs 365 dager 21 000 kr
Elæring Cisco U. Essentials [+]
Elæring Cisco U. Essentials [-]
Les mer
2 dager 24 000 kr
28 Aug
23 Oct
22 Dec
SDWFND: Cisco SD WAN Operation and Deployment [+]
SDWFND: Cisco SD WAN Operation and Deployment [-]
Les mer